黑龙江稀土永磁材料项目可行性研究报告(模板范文).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《黑龙江稀土永磁材料项目可行性研究报告(模板范文).docx》由会员分享,可在线阅读,更多相关《黑龙江稀土永磁材料项目可行性研究报告(模板范文).docx(116页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域咨询/黑龙江稀土永磁材料项目可行性研究报告目录第一章 行业发展分析7一、 磁性材料产业链7二、 汽车EPS主流地位难被替代,对磁性材料需求稳定增长8三、 政策大幅改善预期,稀土永磁行业最受益10第二章 项目建设背景、必要性20一、 新能源汽车成长前景广阔,国内主配永磁驱动电机将拉动高端钕铁硼需求20二、 高性能稀土永磁材料渗透率持续增加,钕铁硼涨价传导成本压力24三、 提升产业链供应链稳定性和竞争力27第三章 总论28一、 项目名称及项目单位28二、 项目建设地点28三、 可行性研究范围28四、 编制依据和技术原则28五、 建设背景、规模29六、 项目建设进度31七、 环境影响31八、 建
2、设投资估算31九、 项目主要技术经济指标32主要经济指标一览表32十、 主要结论及建议34第四章 项目选址分析35一、 项目选址原则35二、 建设区基本情况35三、 加强创新能力建设36四、 打造先进制造业优势产业集群37五、 项目选址综合评价37第五章 产品规划与建设内容39一、 建设规模及主要建设内容39二、 产品规划方案及生产纲领39产品规划方案一览表40第六章 建筑工程方案分析41一、 项目工程设计总体要求41二、 建设方案41三、 建筑工程建设指标42建筑工程投资一览表42第七章 发展规划分析44一、 公司发展规划44二、 保障措施45第八章 SWOT分析说明48一、 优势分析(S)
3、48二、 劣势分析(W)49三、 机会分析(O)50四、 威胁分析(T)50第九章 劳动安全生产分析56一、 编制依据56二、 防范措施57三、 预期效果评价60第十章 原辅材料供应及成品管理61一、 项目建设期原辅材料供应情况61二、 项目运营期原辅材料供应及质量管理61第十一章 组织机构及人力资源配置63一、 人力资源配置63劳动定员一览表63二、 员工技能培训63第十二章 工艺技术说明65一、 企业技术研发分析65二、 项目技术工艺分析67三、 质量管理68四、 设备选型方案69主要设备购置一览表70第十三章 建设进度分析72一、 项目进度安排72项目实施进度计划一览表72二、 项目实施
4、保障措施73第十四章 投资估算74一、 编制说明74二、 建设投资74建筑工程投资一览表75主要设备购置一览表76建设投资估算表77三、 建设期利息78建设期利息估算表78固定资产投资估算表79四、 流动资金80流动资金估算表81五、 项目总投资82总投资及构成一览表82六、 资金筹措与投资计划83项目投资计划与资金筹措一览表83第十五章 经济效益分析85一、 基本假设及基础参数选取85二、 经济评价财务测算85营业收入、税金及附加和增值税估算表85综合总成本费用估算表87利润及利润分配表89三、 项目盈利能力分析90项目投资现金流量表91四、 财务生存能力分析93五、 偿债能力分析93借款还
5、本付息计划表94六、 经济评价结论95第十六章 招投标方案96一、 项目招标依据96二、 项目招标范围96三、 招标要求97四、 招标组织方式97五、 招标信息发布101第十七章 项目综合评价说明102第十八章 附表附录104营业收入、税金及附加和增值税估算表104综合总成本费用估算表104固定资产折旧费估算表105无形资产和其他资产摊销估算表106利润及利润分配表107项目投资现金流量表108借款还本付息计划表109建设投资估算表110建设投资估算表110建设期利息估算表111固定资产投资估算表112流动资金估算表113总投资及构成一览表114项目投资计划与资金筹措一览表115第一章 行业发
6、展分析一、 磁性材料产业链磁性材料是指对外界磁场产生强磁性的材料。能对磁场做出某种方式反应的材料称为磁性材料,按照物质在外磁场中表现出来磁性的强弱,可将其分为抗磁性物质、顺磁性物质、铁磁性物质、反铁磁性物质和亚铁磁性物质。大多数材料是抗磁性或顺磁性的,它们对外磁场反应较弱。铁磁性物质和亚铁磁性物质是强磁性物质,通常所说的磁性材料即指强磁性材料。磁性材料分为永磁材料和软磁材料。磁性材料按照其磁化的难易程度,一般分为永磁材料及软磁材料。永磁材料又称为恒磁材料或硬磁材料,是指磁通密度以及磁极化强度具有高矫顽力的磁性材料,它经过充磁达到饱和,去掉外磁场后仍然具有磁性。软磁材料是指具有低矫顽力和高磁导率
7、、易于磁化,也易于退磁的磁性材料。永磁材料包括金属永磁材料、永磁铁氧体和稀土永磁材料。其中稀土永磁材料经过第一代的SmCo5永磁体和第二代Sm2Co17永磁体,到目前主要应用的第三代Nd-Fe-B永磁体。软磁材料则主要包括铁氧体软磁材料和金属软磁材料,其中金属软磁材料包括传统合金软磁、金属磁粉芯和非晶及纳米晶合金软磁材料。不同磁性材料产业链迥异,下游应用领域差异较大。尽管不同磁性材料下游应用领域有所重叠,但根据材料不同成分和性能以及应用成本,不同磁性材料具体应用范围有较大差异。钕铁硼永磁材料下游需求主要集中于传统领域的VCM、汽车EPS(电动助力转向系统)和消费类电子产品和新能源以及节能领域的
8、风力发电机、新能源汽车驱动电机、节能电梯和变频空调压缩机。永磁铁氧体则是永磁微特电机的核心部件,一般作为电机定子,主要应用于汽车、摩托车、家电、电动工具及健身器材等各类电机,其中应用最广泛的是汽车、摩托车和变频家电行业。而金属软磁材料则是制造电感元件的核心材料,是高频电能变换设备中的核心元件,下游集中于电力电子技术领域,广泛用于变频空调变频器、UPS、光伏发电逆变器、新能源汽车(AC/DC车载充电机和车载DC/DC变换器中PFC、BOOST、BUCK等电路模型)、电能质量整治有源滤波器等领域。二、 汽车EPS主流地位难被替代,对磁性材料需求稳定增长EPS系统小型、省电、灵活,占据乘用车市场主要
9、份额,短期难以被替代。汽车转向系统是用来改变或保持汽车行驶方向的专用系统。经过长时期的发展,汽车助力转向系统已经发展出了机械液压助力转向系统(HPS)、电子液压助力转向系统(EHPS)、电动助力转向系统(EPS)以及更加先进的线控转向系统(SBW)。EPS体积小、耗电少、轻便灵活,广泛应用于乘用车助力转向系统。HPS和EHPS由于动力十足、价格低廉,在绝大部分商用车,尤其是重型车辆上得到广泛应用;但同时由于其不仅功耗大,且存在液压油泄露问题,难以满足环保要求,环保趋严下终将被EPS取代。SBW相较EPS最大的区别在于去掉了方向盘和齿条间的机械连接,采用ECU传递指令,具有反应速度快、安装方式灵
10、活、重量轻、碰撞安全性高等优势。尽管SBW技术目前已在英菲尼迪的几款车型上得到量产,但但还存在成本高、技术不够成熟、用户接受度低等问题,渗透率还非常低,短期难以替代EPS。高性能钕铁硼永磁材料是生产EPS的核心零部件。EPS系统主要由传感器、助力电机、电控单元(ECU)、车载电源系统等构成,其中起核心作用的便是助力电机,而高性能钕铁硼永磁材料是生产助力电机的核心零部件材料。2020年EPS销量小幅下降,其在乘用车中渗透率已达90.1%。2020年我国EPS配套销量为1813.5万套,同比小幅下滑0.38%。其在乘用车领域的渗透率已经高达90.7%,在新能源乘用车份额占到99.91%。国外部分国
11、家EPS渗透率高达100%,未来几年我国EPS渗透率仍将上升,根据佐思汽研的预计,在2024-2025年将提升至96%以上高点,2026年以后随着SBW替代将开始回落。尽管未来SBW是对EPS造成替代的技术路线,但这种替代对高性能钕铁硼磁材影响较小,两种路线的主要区别在于方向盘和齿轮的链接,而SBW中的转向盘回正力矩电机仍然可能选择性能高的永磁体电机。预计2021-2025汽车EPS对高端钕铁硼毛坯需求复合增速为10.24%。根据中国汽车工业协会以及中国汽车技术研究中心发布的新能源汽车蓝皮书:中国新能源汽车产业发展报告(2021)预计,假设2021年国内汽车产量2600万辆,到2030年稳定增
12、长至3000万辆,EPS对钕铁硼磁材单耗0.25公斤/量,EPS仍然是汽车主流的技术路线,预计2021-2025年汽车EPS对高端钕铁硼毛坯复合增速为10.24%。三、 政策大幅改善预期,稀土永磁行业最受益电机能效提升计划(2021-2023年)政策发布,加快高效节能电机推广应用,推广使用永磁电机。2021年11月21日工信部印发电机能效提升计划(2021-2023年),通知中提出加快高效节能电机推广应用。通知中重点任务包括大力发展与高效节能电机合理匹配的新一代风机、水泵产品,大力推动基础材料及零部件绿色升级,推动风机、泵、压缩机等电机系统节能技术研发,加快应用低速大转矩直驱技术、高速直驱技术
13、、伺服驱动技术等;引导企业实施电机等重点用能设备更新升级,优先选用高效节能电机,加快淘汰不符合现行国家能效标准要求的落后低效电机;推广2级能效及以上的变频调速永磁电机。针对使用变速箱、耦合器的传动系统,鼓励采用低速直驱和高速直驱式永磁电机。大力发展永磁外转子电动滚筒、一体式螺杆压缩机等电动机与负载设备结构一体化设计技术和产品。从政策制定的目的来看,加快高效节能电机推广应用本身即为助力实现碳达峰碳中和目标,在推动双碳政策的大背景下,政府执行意愿预计较强。从保障措施来看,通知提出充分利用节能减排等现有资金渠道,对电机能效提升重点项目给予支持;同时严格执行新能效标准,组织实施工业专项节能监察。强监管
14、的落实,将有效推进淘汰低效电机和高效电机的改造升级。钕铁硼永磁材料磁性能和高性价比优势突出,高性能钕铁硼永磁材料作为重要的功能性材料,广泛应用于新能源和节能环保领域的高效节能稀土永磁电机。与其他永磁材料相比,钕铁硼永磁材料具有高剩磁、高磁能积、高内禀矫顽力的特点,是目前世界上发现的永磁材料中磁性能最强的一种。由于比其他永磁材料更强大,钕铁硼永磁材料较小规模的使用便可产生相同的磁场,适用于轻量化、小体积应用场景。此外钕铁硼永磁材料具有较强的抗磁损性能,不容易产生退磁,适中的温度稳定性使其能够在相对较高稳定环境下工作。同时,钕铁硼永磁材料机械性能较好,加工方便,成品率高,并可在装配后充磁。总之,钕
15、铁硼永磁电机以其高效低能耗、控制性能好、稳定性强以及体积小、重量轻、结构多样化等优点,广泛应用于新能源和节能环保领域的高效节能电机。高性能钕铁硼磁性材料成长空间打开,行业增幅有望得到较大幅度提升。根据政策主要目标:到2023年,高效节能电机年产量达到1.7亿千瓦,在役高效节能电机占比达到20%以上。同时假设工业电机稳定增长,并且在电机保有量维持比例不变。若不考虑存量替代需求,未来两年高端钕铁硼需求增速有望提升,2025年前CAGR有望达到36%;若考虑存量替代,未来两年则具备较强弹性。风电长期增长空间较大,大型化趋势下永磁直驱及半直驱电机将为高端钕铁硼成长提供支撑风能成为全球清洁、更具竞争力的
16、能源的主流来源。过去20年风能得到了突飞猛进的发展。世纪之初,它是欧洲和美国的一个利基能源,而目前却成为全球清洁、更具竞争力的能源的主流来源,同时风电装机不断壮大成为仅次于太阳能光伏的新能源部署。从最初相当昂贵开始,风能如今在全球约三分之二的地区比新建的煤炭或天然气更具成本竞争力。随着陆上风电技术的成熟,海上风电已被政府和国际机构视为能源转型的下一个游戏规则改变者。在接下来的十年里,建设新的风能将比运营现有的煤炭或天然气发电厂更具成本效益。政策推动和技术改进叠加成本显著下降推动风电装机量迅速增长。2010-2020年全球风电累计装机容量从198GW增加至743GW,年均增速14.14%。过去十
17、年陆上风电的快速发展离不开政策持续推动、风电机组技术不断进步、以及由于规模经济、竞争力增强和行业不断成熟带来的总安装成本、运营和维护(O&M)成本以及LCOE的明显下降。政策扶持驱动风电装机规模壮大,对于推动技术进步、降低风电度电成本有重要意义。2018-2020年陆上风电新增装机容量60%左右都由中国上网电价政策(FiT)和美国的生产税抵免政策(PTC)贡献。海上风电项目投资额及周期相对较长,行业扶持政策对于降低投资风险和维持项目受益稳定至关重要,主要海上风电市场的发展中均离不开相关补贴政策的推动,目前在在欧洲和亚洲市场(德国、荷兰、中国,日本、越南等)海上风电政策正在从固定上网电价(FiT
18、)向竞争性机制转型;在美国,包括投资税抵扣(ITC)和生产税抵扣(PTC)等税收刺激政策则应用于海上风电领域。全球风电平准化度电成本(LCOE)显著降低,风电的经济性逐步凸显。根据GWEC的统计,全球陆上风电项目LCOE长期持续下降,1983-2020年全球陆上风电加权平均LCOE降幅87%,2010-2020年全球陆上风电加权平均降幅54%。我国陆上风电项目加权平均LCOE的历史下降幅度达到79%。截至2020年,全球主要陆上风电装机国家中除日本外,加权平均LCOE均低于0.055美元/kWh,处于化石燃料发电成本低位区间,其经济性逐步凸显。海上风电方面,2010-2020年全球加权平均LC
19、OE下降48%,同期我国海上风电平均LCOE下降52%,成为全球海上风电发电成本第二低的国家。风电机组大型化大容量发展趋势明显。风电机组大型化主要是为了降低风电的度电成本,风电机组功率、叶轮直径、塔架高度、容量系数的提高意味着年发电量的提高。虽然大型风电机组的成本更高,但由于风电机组数量减少,在基础、电缆、安装及运营上的投入都会降低。2020年全球新增海上风电机组的平均功率已经突破6MW,而新增陆上风机的平均功率也达到2.9MW。我国陆上风电已从2008-2013年以1.5MW级别机型为主流,提升至2020年以2.5MW为主,而3MW以上的风电机组占比已超过30%,同时单机容量4-5MW级别机
20、组已经小批量投产。我国海上风电方面,从首个海上风电场以3MW级别为主提升至2020年5MW以上级别为主流。国内风电目前以双馈机组、永磁直驱机组和半直驱机组三大配型为主,高性能钕铁硼磁材主要用在直驱和半直驱风电机组发电机。在风电机组的设计和选型中,传动链驱动技术是一个非常重要的因素。机组传动技术由早期的齿轮箱技术(单机容量较小)、双馈技术等发展到目前全球市场上主要采用的高速齿轮箱为核心的高速传动链技术、直驱技术和中速传动链技术共存的局面。不同的传动技术代表着不同的机组构造类型,分别为双馈机组、直驱机组和半直驱机组。双馈机组结构为齿轮箱+双馈发电机+变流器,直驱机组结构为发电机+变流器,根据直驱发
21、电机励磁不同又分为电励磁直驱和永磁直驱,半直驱机组结构则为齿轮箱(低传动比)+永磁直驱发电机+变流器。风电机组中,发电机的技术路线选型需要与传动链选型相匹配,按照其结构和工作原理分为异步电机和同步电机。异步型电机按其转子绕组结构分为双馈异步发电机和鼠笼式异步发电机,同步型电机按其转子励磁方式分为永磁同步发电机和电励磁同步发电机。因此主流的传动技术和电机技术配型就是高速传动链技术结合双馈异步发电机技术的双馈异步机组(HSG-DFIG)、高速传动链技术结合鼠笼式异步发电机技术的鼠笼异步机组(HSG-IG)、直驱技术结合永磁发电机的永磁直驱机组(DD-PMG)、直驱技术结合电励磁发电机技术的电励磁机
22、组(DD-EESG)、中速传动链技术结合永磁发电机的半直驱机组(MSG-PMG)。双馈机组可靠性低、故障率高,单机容量提升极限受制于系统结构,近年来直驱及半直驱机组在我国陆上风电机组中的渗透率明显提高。双馈机组因转速高、转矩小,发电机尺寸较小、重量较轻,其技术路线形成较早、较成熟,以比较优越的性能、技术优势和价格优势等,迅速建立起完善的工业链体系,因而过去全球主机厂商在陆上风电机组大都以该技术路线为主。但是因双馈机组齿轮箱增速比大,转子绕组需通过滑环、电刷与励磁变换器连接,因此要定期对发电机进行清理碳粉和灰尘、更换电刷等维护工作,降低了系统的可靠性,而滑环系统导致故障率高。随着生产技术与生产工
23、艺的提高、生产成本的降低、机组容量的不断增加,使得双馈机组对发电机轴承、齿轮箱技术、滑环、碳刷等技术的要求越来越高,国内厂家风机的轴承、高速齿轮箱等核心零部件还在逐步国产化进程中,受到现有制造工艺和技术水平限制,要保证核心零部件的加工精度和生产质量有一定难度。在风电单机容量持续提升的趋势下,受齿轮箱限制,双馈单机功率到达一定程度后无法进一步增大。因此近年来随着电气技术的进步,直驱技术的优势越来越明显,直驱式风电机组因为直接由风力驱动,没有增速箱的不利影响,具有发电效率高、可靠性高、运行维护成本低和电网接入性能优异的优点,在新增的风电机组中投用比例逐渐攀升。2010-2020年我国陆上风电机组新
24、增装机容量中,直驱技术路线占比由21.5%提升至30.5%,半直驱技术路线占比由2017年的3.2%提升至最高11.5%,2020年受抢装潮影响回落至8.4%。海上风电单机容量提升下直驱及半直驱成为整机商普遍选择的技术路线,半直驱技术有望成为海上超大型机组主流。海上风电具有自身特殊的环境,海上气候环境恶劣、高温、高湿、高盐雾等因素对风电机组防腐性能提出了更高要求,同时由于环境的特殊,海上风电机组的维护非常困难,运维成本也远高于陆上风电。相对于陆上风电机组,海上风电机组大型化带来的好处更加明显。据RystadEnergy的研究项目推算,对于1GW的海上风电项目,采用14MW的风电机组将比采用10
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 黑龙江 稀土 永磁 材料 项目 可行性研究 报告 模板 范文
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内