角的平分线的性质(1).ppt
《角的平分线的性质(1).ppt》由会员分享,可在线阅读,更多相关《角的平分线的性质(1).ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复习提问复习提问1 1、角平分线的概念、角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。oBCA12复习提问复习提问 2 2、点到直线距离、点到直线距离:从直线外一点从直线外一点到这条直线的到这条直线的垂线段垂线段的的长度长度,叫做叫做点到直线的距离。点到直线的距离。OPAB我的我的长度长度 如图如图,是一个平分角的仪器是一个平分角的仪器,其中其中AB=AD,BC=DC.将点将点A放在角的顶点放在角的顶点,AB和和AD沿着角的两边放下沿着角的两边放下,沿沿AC画一条画一条射线射线AE,AE就是角平分线就是角平分线.你能说明它的道理吗你能说明它的道理吗?CADB你能由
2、上面的探究得出作已知角的平分线的方法吗你能由上面的探究得出作已知角的平分线的方法吗?E角的平分线的作法角的平分线的作法证明:证明:在在ACD和和ACB中中 AD=AB(已知)(已知)DC=BC(已知)(已知)CA=CA(公共边)(公共边)ACD ACB(SSS)CAD=CAB(全等三角形的(全等三角形的 对应边相等)对应边相等)AC平分平分DAB(角平分线的定义)(角平分线的定义)尺规作角的平分线尺规作角的平分线A A画法:画法:以为圆心,适当以为圆心,适当长为半径作弧,交于,长为半径作弧,交于,交于交于分别以,为分别以,为圆心大于圆心大于 1/2 的长的长为半径作弧两弧在为半径作弧两弧在的内
3、部交于的内部交于作射线作射线射线即为所求射线即为所求A A为什么为什么为什么为什么OCOCOCOC是角平分线呢?是角平分线呢?是角平分线呢?是角平分线呢?想一想:想一想:已知:已知:OM=ONOM=ON,MC=NCMC=NC。求证:求证:OCOC平分平分AOBAOB。证明证明:在:在OMCOMC和和ONCONC中,中,OM=ONOM=ON,MC=NCMC=NC,OC=OCOC=OC,OMC ONCOMC ONC(SSSSSS)MOC=NOCMOC=NOC 即:即:OCOC平分平分AOBAOB练习练习1 1:平分平角:平分平角AOBAOB。归纳:归纳:“过直线上一点作这条直线的垂线过直线上一点作
4、这条直线的垂线”的方法。的方法。ABOCDABOAOEBCPD 将将 AOBAOB对折对折,再折出一个直角三角形再折出一个直角三角形(使第一条折痕为斜边使第一条折痕为斜边),),然后展开然后展开,观察两次折叠形成的三条折痕观察两次折叠形成的三条折痕,你能得出什么结论你能得出什么结论?可以看一看可以看一看,第一条折痕是第一条折痕是AOBAOB的平分线的平分线OCOC,第二次折叠第二次折叠形成的两条折痕形成的两条折痕PD,PEPD,PE是角的平分线上一点到是角的平分线上一点到AOBAOB两边的两边的距距离离,这两个距离相等这两个距离相等.折一折折一折角平分线的性质角平分线的性质已知:如图,已知:如
5、图,OC是是AOB的平分线,点的平分线,点P在在OC上,上,PDOA,PEOB,垂足分别是,垂足分别是D,E。求证:求证:PD=PE证明:证明:PDOA,PEOB(已知)(已知)PDO=PEO=90(垂直的定义)(垂直的定义)在在PDO和和PEO中中 PD=PE(全等三角形的对应边相等)(全等三角形的对应边相等)PDO=PEO AOC=BOC OP=OP PDO PEO(AAS)角的平分线上的点到这个角的两边的距离相等。角的平分线上的点到这个角的两边的距离相等。DP PEAOBC证明几何命题的一般步骤:1、明确命题的已知和求证2、根据题意,画出图形,并用数学符号表示已知和求证;3、经过分析,找
6、出由已知推出求证的途径,写出证明过程。角平分线的性质角平分线的性质定理:角的平分线上的点到角的两边的距离相等定理:角的平分线上的点到角的两边的距离相等用符号语言表示为:用符号语言表示为:AOBPED12 1=2 1=2 PD OA PD OA,PE OBPE OBPD=PEPD=PE(角角的的平分线上的点到角的两边的平分线上的点到角的两边的距离相等距离相等)推理的理由有推理的理由有三个三个,必须写完全,不能必须写完全,不能少了任何一个。少了任何一个。角平分线的性质角平分线的性质角的平分线上的点到角的两边的距离相等。角的平分线上的点到角的两边的距离相等。角的平分线上的点到角的两边的距离相等。角的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平分线 性质
限制150内