【数学】2012年高考真题理科解析汇编:立体几何.doc
《【数学】2012年高考真题理科解析汇编:立体几何.doc》由会员分享,可在线阅读,更多相关《【数学】2012年高考真题理科解析汇编:立体几何.doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、知识改变命运,学习成就未来2012年高考真题理科数学解析汇编:立体几何一、选择题1 (2012年高考(新课标理)已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且;则此棱锥的体积为()ABCD2 (2012年高考(新课标理)如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为()ABCD3 (2012年高考(浙江理)已知矩形ABCD,AB=1,BC=.将ABD沿矩形的对角线BD所在的直线进行翻着,在翻着过程中,()A存在某个位置,使得直线AC与直线BD垂直 B存在某个位置,使得直线AB与直线CD垂直 C存在某个位置,使得直线AD与直线BC垂直 D
2、对任意位置,三直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直4 (2012年高考(重庆理)设四面体的六条棱的长分别为1,1,1,1,和,且长为的棱与长为的棱异面,则的取值范围是()ABCD5 (2012年高考(四川理)如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为()ABCD6 (2012年高考(四川理)下列命题正确的是()A若两条直线和同一个平面所成的角相等,则这两条直线平行B若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C若一条直
3、线平行于两个相交平面,则这条直线与这两个平面的交线平行D若两个平面都垂直于第三个平面,则这两个平面平行7 (2012年高考(上海春)已知空间三条直线若与异面,且与异面,则 ()A与异面.B与相交.C与平行.D与异面、相交、平行均有可能.8 (2012年高考(陕西理)如图,在空间直角坐标系中有直三棱柱,则直线与直线夹角的余弦值为( )()ABCD9 (2012年高考(江西理)如图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0x1),截面下面部分的体积为V(x),则函数y=V(x)的图像大致为( )10(2012年
4、高考(湖南理)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )A图1BCD11(2012年高考(湖北理)我国古代数学名著九章算术中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积,求其直径的一个近似公式. 人们还用过一些类似的近似公式. 根据判断,下列近似公式中最精确的一个是() ABCD(一)必考题(1114题)12(2012年高考(湖北理)已知某几何体的三视图如图所示,则该几侧视图正视图24242俯视图何体的体积为()AB CD13(2012年高考(广东理)(立体几何)某几何体的三视图如图1所示,它的体积为
5、( )()ABCD14(2012年高考(福建理)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( 0()A球B三棱柱C正方形D圆柱15(2012年高考(大纲理)已知正四棱柱中,为的中点,则直线 与平面的距离为()A2BCD116(2012年高考(北京理)某三棱锥的三视图如图所示,该三棱锥的表面积是()ABCD 17(2012年高考(安徽理)设平面与平面相交于直线,直线在平面内,直线在平面内,且,则“”是“”的( )()A充分不必要条件B必要不充分条件C充要条件D即不充分不必要条件二、填空题18(2012年高考(天津理)个几何体的三视图如图所示(单位:),则该几何体的体积为_.
6、19(2012年高考(浙江理)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于_cm3.20( 2012年高考(四川理)如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是_.ABCD21(2012年高考(上海理)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2。若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是 _ .22(2012年高考(上海理)若一个圆锥的侧面展开图是面积为2p的半圆面,则该圆锥的体积为_ .23(2012年高考(山东理)如图,正方体的棱长为1,分别为线段上的点,则三棱锥的体积为_.24(20
7、12年高考(辽宁理)已知正三棱锥ABC,点P,A,B,C都在半径为的求面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为_.25(2012年高考(辽宁理)一个几何体的三视图如图所示,则该几何体的表面积为_.26(2012年高考(江苏)DABC如图,在长方体中,则四棱锥的体积为_cm3.27(2012年高考(大纲理)三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为_.28(2012年高考(安徽理)某几何体的三视图如图所示,该几何体的表面积是.三、解答题29(2012年高考(天津理)如图,在四棱锥中,丄平面,丄,丄,.()证明丄;()求二面角的正弦值;()设E为棱上的点
8、,满足异面直线BE与CD所成的角为,求AE的长.30(2012年高考(新课标理)如图,直三棱柱中,是棱的中点,(1)证明:(2)求二面角的大小.31(2012年高考(浙江理)如图,在四棱锥PABCD中,底面是边长为的菱形,且BAD=120,且PA平面ABCD,PA=,M,N分别为PB,PD的中点.()证明:MN平面ABCD;() 过点A作AQPC,垂足为点Q,求二面角AMNQ的平面角的余弦值.32(2012年高考(重庆理)(本小题满分12分()小问4分()小问8分)如图,在直三棱柱 中,AB=4,AC=BC=3,D为AB的中点()求点C到平面 的距离;()若,求二面角 的平面角的余弦值.33(
9、2012年高考(四川理)如图,在三棱锥中,平面平面.()求直线与平面所成角的大小;()求二面角的大小.34(2012年高考(上海理)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA底面ABCD,E是PC的中点.已知AB=2,AD=2,PA=2.求:ABCDPE(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小. 35(2012年高考(上海春)如图,正四棱柱的底面边长为,高为,为线段的中点.求:(1)三棱锥的体积;(2)异面直线与所成角的大小(结果用反三角函数值表示)36(2012年高考(陕西理)(1)如图,证明命题“是平面内的一条直线,是外的一条直线(不垂直于),是直线在上
10、的投影,若,则”为真.(2)写出上述命题的逆命题,并判断其真假 (不需要证明) 37(2012年高考(山东理)在如图所示的几何体中,四边形是等腰梯形,平面. ()求证:平面;()求二面角的余弦值.38(2012年高考(辽宁理) 如图,直三棱柱,点M,N分别为和的中点.()证明:平面;()若二面角为直二面角,求的值.39(2012年高考(江西理)在三棱柱中,已知,在在底面的投影是线段的中点。(1)证明在侧棱上存在一点,使得平面,并求出的长;(2)求平面与平面夹角的余弦值。40(2012年高考(江苏)如图,在直三棱柱中,分别是棱上的点(点 不同于点),且为的中点.求证:(1)平面平面;(2)直线平
11、面.ABCDPE图541(2012年高考(湖南理) 如图5,在四棱锥P-ABCD中,PA平面ABCD,AB=4,BC=3,AD=5,DAB=ABC=90,E是CD的中点.()证明:CD平面PAE;()若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.42(2012年高考(湖北理)如图1,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将折起,使(如图2所示). ()当的长为多少时,三棱锥的体积最大;()当三棱锥的体积最大时,设点,分别为棱,的中点,试在棱上确定一点,使得,并求与平面所成角的大小.DABCACDB图2图1ME.43(2012年高考(
12、广东理)如图5所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.()证明:平面;()若,求二面角的正切值.44(2012年高考(福建理)如图,在长方体中为中点.()求证:()在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由. ()若二面角的大小为,求的长.45(2012年高考(大纲理)(注意:在试题卷上作答无效)如图,四棱锥中,底面为菱形,底面,是上的一点,.(1)证明:平面;(2)设二面角为,求与平面所成角的大小.46(2012年高考(北京理)如图1,在RtABC中,C=90,BC=3,AC=6,D,E分别是AC,AB上的点,且DEBC,DE=2,将ADE沿DE折起到A1
13、DE的位置,使A1CCD,如图2. (1)求证:A1C平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由. 47(2012年高考(安徽理)平面图形如图4所示,其中是矩形,.现将该平面图形分别沿和折叠,使与所在平面都与平面垂直,再分别连接,得到如图2所示的空间图形,对此空间图形解答下列问题.()证明:; ()求的长;()求二面角的余弦值. 2012年高考真题理科数学解析汇编:立体几何参考答案一、选择题1. 【解析】选 的外接圆的半径,点到面的距离 为球的直径点到面的距离为 此棱锥的体积为 另:排除 2
14、. 【解析】选 该几何体是三棱锥,底面是俯视图,高为 此几何体的体积为 3. 【答案】B 【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项B是正确的. 4. 【答案】A 【解析】. 【考点定位】本题考查棱锥的结构特征,考查空间相象力,极限思想的运用,是中档题. 5. 答案A 解析 以O为原点,分别以OB、OC、OA所在直线为x、y、z轴, 则,A , 点评本题综合性较强,考查知识点较为全面,题设很自然的把向量、立体几何、三角函数等基础知识结合到了一起.是一道知识点考查较为全面的好题.要做好本题需要有扎实的数学基本功. 6. 答案C 解析若两条直线和同一平面所成
15、角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确. 点评本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式. 7. D 8. 解析:不妨设,则,直线与直线夹角为锐角,所以余弦值为,选A. 9. A【解析】本题综合考查了棱锥的体积公式,线面垂直,同时考查了函数的思想,导数法解决几何问题等重要的解题方法. (定性法)当时,随着的增大,观察图形可知,单调递减,且递减的速度越来越快;当时
16、,随着的增大,观察图形可知,单调递减,且递减的速度越来越慢;再观察各选项中的图象,发现只有A图象符合.故选A. 【点评】对于函数图象的识别问题,若函数的图象对应的解析式不好求时,作为选择题,没必要去求解具体的解析式,不但方法繁琐,而且计算复杂,很容易出现某一步的计算错误而造成前功尽弃;再次,作为选择题也没有太多的时间去给学生解答;因此,使用定性法,不但求解快速,而且准确节约时间. 10. 【答案】D 【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何
17、体的俯视图,因为它的正视图上面应为如图的矩形. 【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 11.考点分析:考察球的体积公式以及估算. 解析:由,设选项中常数为,则;A中代入得,B中代入得,C中代入得,D中代和主得,由于D中值最接近的真实值,故选择D. 12.考点分析:本题考察空间几何体的三视图. 解析:显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为.选B. 13.解析:C.该几何体下部分是半径为3,高为5的圆柱,体积为,上部分是半径为3,高为4
18、的圆锥,体积为,所以体积为. 14. 【答案】D 【解析】分别比较ABC的三视图不符合条件,D符合. 【考点定位】考查空间几何体的三视图与直观图,考查空间想象能力、逻辑推理能力. 15.答案D 【命题意图】本试题主要考查了正四棱柱的性质的运用,以及点到面的距离的求解.体现了转换与化归的思想的运用,以及线面平行的距离,转化为点到面的距离即可. 【解析】连结交于点,连结,因为是中点,所以,且,所以,即直线 与平面BED的距离等于点C到平面BED的距离,过C做于,则即为所求距离.因为底面边长为2,高为,所以,所以利用等积法得,选D. 16. 【答案】B 【解析】从所给的三视图可以得到该几何体为三棱锥
19、,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:,因此该几何体表面积,故选B. 【考点定位】本小题主要考查的是三棱锥的三视图问题,原来考查的是棱锥或棱柱的体积而今年者的是表面积,因此考查了学生的计算基本功和空间想象能力. 17. 【解析】选 如果;则与条件相同 二、填空题18. 【答案】 【命题意图】本试题主要考查了简单组合体的三视图的画法与体积的计算以及空间想象能力. 【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:=. 19. 【答案】1 【解析】观察三视图知该三棱锥的底面为一直角三角 形,右侧面也是一直角三角形.故体积等于
20、. 20. 答案90 解析方法一:连接D1M,易得DNA1D1 ,DND1M, 所以,DN平面A1MD1, 又A1M平面A1MD1,所以,DNA1D1,故夹角为90 方法二:以D为原点,分别以DA, DC, DD1为x, y, z轴,建立空间直角坐标系Dxyz.设正方体边长为2,则D(0,0,0),N(0,2,1),M(0,1,0)A1(2,0,2) 故, 所以,cos = 0,故DND1M,所以夹角为90 点评异面直线夹角问题通常可以采用两种途径: 第一,把两条异面直线平移到同一平面中借助三角形处理; 第二,建立空间直角坐标系,利用向量夹角公式解决. 21. ADBEC解析 作BEAD于E,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 2012 年高 考真题 理科 解析 汇编 立体几何
限制150内