二次函数恒成立问题(共8页).doc
《二次函数恒成立问题(共8页).doc》由会员分享,可在线阅读,更多相关《二次函数恒成立问题(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数恒成立问题2016年8月东莞莞美学校一、恒成立问题的基本类型:类型1:设,(1)上恒成立;(2)上恒成立。类型2:设(1)当时,上恒成立,上恒成立(2)当时,上恒成立上恒成立类型3:。类型4:二、恒成立问题常见的解题策略:策略一:利用二次函数的判别式 对于一元二次函数有:(1)上恒成立;(2)上恒成立例1.若不等式的解集是R,求m的范围。解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0。(1)当m-1=0时,不等式化为20恒成立,满足题意;(2)时,只需,所以,。策略二:利用函数的最值(或值域)(1)对任
2、意x都成立;(2)对任意x都成立。简单计作:“大的大于最大的,小的小于最小的”。由此看出,本类问题实质上是一类求函数的最值问题。例2.已知,若恒成立,求a的取值范围. 解析 本题可以化归为求函数f(x)在闭区间上的最值问题,只要对于任意.若恒成立或或,即a的取值范围为. 策略三:利用零点分布例3.已知,若恒成立,求a的取值范围.解析 本题可以考虑f(x)的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即0或或,即a的取值范围为-7,2.点评 对于含参数的函数在闭区间上函数值恒大于等于零的问题,可以考虑函数的零点分布情况,要求对应闭区间上函数图象在x轴的上方或在
3、x轴上就行了.Oxyx-1变式:设,当时,恒成立,求实数的取值范围。解:设,则当时,恒成立当时,显然成立;当时,如图,恒成立的充要条件为:解得。综上可得实数的取值范围为。策略四:分离参数法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:1)恒成立2)恒成立例4.函数,若对任意,恒成立,求实数的取值范围。解:若对任意,恒成立,即对,恒成立,考虑到不等式的分母,只需在时恒成立而得在时恒成立,只要在时恒成立。而易求得二次函数在上的最大值为,所以。 变式:已知函数时恒成立,求实数
4、的取值范围。解: 将问题转化为对恒成立。令,则由可知在上为减函数,故即的取值范围为。注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。策略五:确定主元在给出的含有两个变量的不等式中,学生习惯把变量看成是主元(未知数),而把另一个变量看成参数,在有些问题中这样的解题过程繁琐。如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。例5.若不等式对满足的所有都成立,求x的范围。解析:我们可以用改变主元的办法,将m视为主变元,即将元不等式化为:,;令,则时,恒成立,所以只需即,所以x的范围是总结:利用了一次函数有:变式:对任意,不等式恒成立,求的取值范围。分析:题中的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 成立 问题
限制150内