《中考总复习》2023全国各地中考数学压轴题精选(21-30)解析版新.doc
《《中考总复习》2023全国各地中考数学压轴题精选(21-30)解析版新.doc》由会员分享,可在线阅读,更多相关《《中考总复习》2023全国各地中考数学压轴题精选(21-30)解析版新.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2014年各地中考数学压轴题精选2130_解析版【21.2014上海】24如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,ADE=90,tanDAE=,EFOD,垂足为F(1)求这个二次函数的解析式;(2)求线段EF、OF的长(用含t的代数式表示);(3)当ECA=OAC时,求t的值考点:相似三角形的判定与性质;待定系数法求二次函数解析式;全等三角形的判定与性质;勾股定理。解答:解:(1)二次函数y=ax2+6x+c的图象经过点A(4,0)、B(1,0),解得,这个二次函数的解析式为:y=
2、2x2+6x+8;(2)EFD=EDA=90DEF+EDF=90,EDF+ODA=90,DEF=ODAEDFDAO,=,EF=t同理,DF=2,OF=t2(3)抛物线的解析式为:y=2x2+6x+8,C(0,8),OC=8如图,连接EC、AC,过A作EC的垂线交CE于G点ECA=OAC,OAC=GCA(等角的余角相等);在CAG与OCA中,CAGOCA,CG=4,AG=OC=8如图,过E点作EMx轴于点M,则在RtAEM中,EM=OF=t2,AM=OA+AM=OA+EF=4+t,由勾股定理得:AE2=AM2+EM2=;在RtAEG中,由勾股定理得:EG=在RtECF中,EF=t,CF=OCOF
3、=10t,CE=CG+EG=+4由勾股定理得:EF2+CF2=CE2,即,解得t1=10(不合题意,舍去),t2=6,t=6【22. 2014广东】22如图,抛物线y=x2x9与x轴交于A、B两点,与y轴交于点C,连接BC、AC(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D设AE的长为m,ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)考点:二次函数综合题。解答:解:(1)已知:抛物线y
4、=x2x9;当x=0时,y=9,则:C(0,9);当y=0时,x2x9=0,得:x1=3,x2=6,则:A(3,0)、B(6,0);AB=9,OC=9(2)EDBC,AEDABC,=()2,即:=()2,得:s=m2(0m9)(3)SAEC=AEOC=m,SAED=s=m2;则:SEDC=SAECSAED=m2+m=(m)2+;CDE的最大面积为,此时,AE=m=,BE=ABAE=过E作EFBC于F,则RtBEFRtBCO,得:=,即:=EF=;以E点为圆心,与BC相切的圆的面积 SE=EF2=【23. 2014嘉兴】24在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内
5、)连接 OP,过点0作OP的垂线交抛物线于另一点Q连接PQ,交y轴于点M作PA丄x轴于点A,QB丄x轴于点B设点P的横坐标为m(1)如图1,当m=时,求线段OP的长和tanPOM的值;在y轴上找一点C,使OCQ是以OQ为腰的等腰三角形,求点C的坐标;(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E用含m的代数式表示点Q的坐标;求证:四边形ODME是矩形考点:二次函数综合题。解答:解:(1)把x=代入 y=x2,得 y=2,P(,2),OP=PA丄x轴,PAMOtanP0M=tan0PA=设 Q(n,n2),tanQOB=tanPOM,n=Q(,),OQ=当 OQ=OC 时,则C1(
6、0,),C2(0,);当 OQ=CQ 时,则 C3(0,1)(2)P(m,m2),设 Q(n,n2),APOBOQ,得n=,Q(,)设直线PO的解析式为:y=kx+b,把P(m,m2)、Q(,)代入,得:解得b=1,M(0,1),QBO=MOA=90,QBOMOAMAO=QOB,QOMA同理可证:EMOD又EOD=90,四边形ODME是矩形【24. 2014贵州安顺】26如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0(1)求抛物线的解析式(2)如果点P由
7、点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动移动开始后第t秒时,设PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由考点:二次函数综合题。解答:解:(1)设抛物线的解析式为y=ax2+bx+c,由题意知点A(0,12),所以c=12,又18a+c=0,ABOC,且AB=6,抛物线的对称轴是,b=4,所以抛物线的解析式为;(2),(0t6)当t=3时,S取最大值为9这时点P的坐标(3,
8、12),点Q坐标(6,6)若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:()当点R在BQ的左边,且在PB下方时,点R的坐标(3,18),将(3,18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,18),()当点R在BQ的左边,且在PB上方时,点R的坐标(3,6),将(3,6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件()当点R在BQ的右边,且在PB上方时,点R的坐标(9,6),将(9,6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件综上所述,点R坐标为(3,18)【25. 2014资阳】25抛物线的顶点在直线y=x+3上,过点F(2,2
9、)的直线交该抛物线于点M、N两点(点M在点N的左边),MAx轴于点A,NBx轴于点B(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PAPB=,求点M的坐标考点:二次函数综合题。专题:压轴题。分析:(1)利用配方法将二次函数整理成顶点式即可,再利用点在直线上的性质得出答案即可;(2)首先利用点N在抛物线上,得出N点坐标,再利用勾股定理得出NF2=NC2+FC2,进而得出NF2=NB2,即可得出答案;(3)求点M的坐标,需要先求出直线PF的解析式首先由(2)的
10、思路得出MF=MA,然后连接AF、FB,通过证明PFAPBF,利用相关的比例线段将PAPB的值转化为PF的值,进而求出点F的坐标和直线PF的解析式,即可得解解答:解:(1)y=x2+x+m=(x+2)2+(m1)顶点坐标为(2,m1)顶点在直线y=x+3上,2+3=m1,得m=2;(2)点N在抛物线上,点N的纵坐标为:a2+a+2,即点N(a,a2+a+2)过点F作FCNB于点C,在RtFCN中,FC=a+2,NC=NBCB=a2+a,NF2=NC2+FC2=(a2+a)2+(a+2)2,=(a2+a)2+(a2+4a)+4,而NB2=(a2+a+2)2,=(a2+a)2+(a2+4a)+4N
11、F2=NB2,NF=NB;(3)连接AF、BF,由NF=NB,得NFB=NBF,由(2)的结论知,MF=MA,MAF=MFA,MAx轴,NBx轴,MANB,AMF+BNF=180MAF和NFB的内角总和为360,2MAF+2NBF=180,MAF+NBF=90,MAB+NBA=180,FBA+FAB=90,又FAB+MAF=90,FBA=MAF=MFA,又FPA=BPF,PFAPBF,=,PF2=PAPB=,过点F作FGx轴于点G,在RtPFG中,PG=,PO=PG+GO=,P(,0)设直线PF:y=kx+b,把点F(2,2)、点P(,0)代入y=kx+b,解得k=,b=,直线PF:y=x+,
12、解方程x2+x+2=x+,得x=3或x=2(不合题意,舍去),当x=3时,y=,M(3,)点评:考查了二次函数综合题,在该二次函数综合题中,融入了勾股定理、相似三角形等重点知识,(3)题通过构建相似三角形将PAPB转化为PF的值是解题的关键,也是该题的难点【26. 2014德州】23如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH(1)求证:APB=BPH;(2)当点P在边AD上移动时,PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFG
13、P的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由考点:翻折变换(折叠问题);二次函数的最值;全等三角形的判定与性质;正方形的性质。分析:(1)根据翻折变换的性质得出PBC=BPH,进而利用平行线的性质得出APB=PBC即可得出答案;(2)首先证明ABPQBP,进而得出BCHBQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)利用已知得出EFMBPA,进而利用在RtAPE中,(4BE)2+x2=BE2,利用二次函数的最值求出即可解答:(1)解:如图1,PE=BE,EBP=EPB又EPH=EBC=90,EPHEPB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考总复习 中考 复习 2023 全国各地 数学 压轴 精选 21 30 解析
限制150内