[精选]72塑件的结构工艺性jej.pptx
《[精选]72塑件的结构工艺性jej.pptx》由会员分享,可在线阅读,更多相关《[精选]72塑件的结构工艺性jej.pptx(81页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第七章第二节塑件的结构工艺性塑料成型工艺及模具设计塑料成型工艺及模具设计第第7章塑料成形概述章塑料成形概述本节基本内容l塑件尺寸、精度及表面质量l塑件的形状结构设计第七章第七章 塑料成形概述塑料成形概述 学习目的与要求学习目的与要求l掌握塑件成型工艺性与模具结构关系l掌握塑件形状结构与模具结构的关系第七章第七章 塑料成形概述塑料成形概述难点难点l对塑件成型工艺性、塑件的形状结构与模对塑件成型工艺性、塑件的形状结构与模具结构的关系的理解。具结构的关系的理解。7.2塑件设计塑件设计原则(结构工艺性)原则(结构工艺性)1塑件设计原则塑件设计原则2 2尺寸精度与表面质量尺寸精度与表面质量3 3形状和
2、结构设计形状和结构设计4 4壁厚与脱模斜度壁厚与脱模斜度5 5嵌件的安放与塑料螺纹、齿轮设计嵌件的安放与塑料螺纹、齿轮设计1 1 塑件设计塑件设计 塑件设计原则塑件设计原则:满足使用要求和外观要求针对不同物理性能扬长避短便于成型加工尽量简化模具结构2.1 2.1 尺寸精度尺寸精度2.2 2.2 尺寸精度的确定尺寸精度的确定2.3 2.3 表面质量表面质量2 2 尺寸精度与表面质量尺寸精度与表面质量2.1 2.1 尺寸精度尺寸精度1、塑件尺寸塑件尺寸概念 塑件尺寸塑件的总体尺寸。2、塑料制品总体尺寸受限制的主要因素主要因素:*塑料的流动性 *成型设备的能力2 2 尺寸精度与表面质量尺寸精度与表面
3、质量 2 尺寸精度与表面质量尺寸精度与表面质量 影响塑件尺寸精度的因素:影响塑件尺寸精度的因素:1 1、模具制造的精度,约为、模具制造的精度,约为1/31/3。2 2、成型时工艺条件的变化,约为、成型时工艺条件的变化,约为1/31/3。3 3、模具磨损及收缩率的波动。、模具磨损及收缩率的波动。具体来说,对于具体来说,对于小尺寸小尺寸制品,制品,模具制模具制造误差造误差对尺寸精度影响最大;而对尺寸精度影响最大;而大尺寸大尺寸制制品则品则收缩波动收缩波动为主要。为主要。2.2 2.2 尺寸精度的确定尺寸精度的确定表表7.27.2是模塑件尺寸公差国家标准(是模塑件尺寸公差国家标准(GB/TGB/T1
4、44861448619931993),表),表7.37.3是常用塑料材料的公差是常用塑料材料的公差等级选用。等级选用。将表将表7.27.2和表和表7.37.3结合起来使用,先查表结合起来使用,先查表7.37.3,根据模塑件的材料品种及用要求选定塑件的,根据模塑件的材料品种及用要求选定塑件的尺寸精度等级,再从表尺寸精度等级,再从表7.27.2中查取塑件尺寸公中查取塑件尺寸公差。然后根据需要进行上、下偏差分配。如基差。然后根据需要进行上、下偏差分配。如基孔制的孔可取表中数值冠以孔制的孔可取表中数值冠以(+)(+)号,如基轴制号,如基轴制的轴可取表中数值冠以的轴可取表中数值冠以(-)(-)号,其余情
5、况则根号,其余情况则根据材料特性和配合性质进行分配。据材料特性和配合性质进行分配。2 2 尺寸精度与表面质量尺寸精度与表面质量2.3 2.3 表面质量表面质量1、塑件制品的表面质量要求:表面粗糙度要求。表面光泽性、色彩均匀性要求。云纹、冷疤、表面缩陷程度要求。熔结痕、毛刺、拼接缝及推杆痕迹等缺陷的要求。2 2 尺寸精度与表面质量尺寸精度与表面质量2 尺寸精度与表面质量尺寸精度与表面质量l2.3 2.3 表面质量表面质量 2、型腔表面粗糙度要求 一般,型腔表面粗糙度要求达0.2-0.4um。透明制品型腔和型芯粗糙度一致。非透明制品的隐蔽面可取较大粗糙度,即型芯表面相对型腔表面略为粗糙。3 3 形
6、状和结构设计形状和结构设计3.1 3.1 形状形状3.2 3.2 结构设计结构设计 设计塑件的内外表面形状要尽量避免侧凹结构,以避免模具采用侧向分型和侧向抽芯机构,否则因设置这些机构而使模具结构复杂.不但模具的制造成本提高,而且还会在塑件上留下分型面线痕,增加了去除飞边的后加工的困难。以成型侧孔和凸凹结构为例。比较两种方案,从而选择优良的设计方案。3 3 形状和结构设计形状和结构设计3.1 3.1 形状形状3 形状和结构设计形状和结构设计图3-1a所示塑件在取出模具前,必须先由抽芯机构抽出侧型芯,然后才能,取出模具结构复杂。图3-1b侧孔形式,无需侧向型芯,模具结构简单。图3-2a所示塑件的内
7、侧有凸起,需采用由侧向抽芯机构驱动的组合式型芯,模具制造困难。图3-2b避免了组合式型芯,模具结构简单。图3-1具有侧孔的塑件图3-2塑件内侧表面形状改进aabb3.1 形状3 形状和结构设计形状和结构设计图3-3、3-4的图a形式需要侧抽芯,图b形式不需侧型芯。3.1 形状aabb图3-3取消塑件上不必要的侧凹结构图3-4无需采用侧向抽芯结构成型的孔结构3 形状和结构设计形状和结构设计 当塑件的内外侧凹陷较浅,同时成型塑件的塑料为聚乙烯、聚丙烯、聚甲醛这类仍带有足够弹性的塑料时,模具可采取强制脱模。3.1 形状 为使强制脱模时的脱模阻力不要过大引起塑件损坏和变形,塑件侧凹深度必须在要求的合理
8、范围内,见图3636下面的说明(公式),同时还要重视将凹凸起伏处设计为圆角或斜面过渡结构。3 3 形状和结构设计形状和结构设计3.2 3.2 结构设计结构设计3.3 形状和结构设计形状和结构设计3.3.2 3.3.2 结构设计结构设计图36 可强制脱模的浅侧凹结构a)(A-B)100%/B5%b)(A-B)100%/C5%3.4 3.4 壁厚与脱模斜度壁厚与脱模斜度3.4.1 3.4.1 脱模斜度设计脱模斜度设计3.4.2 3.4.2 塑件壁厚设计塑件壁厚设计3.4.3 3.4.3 加强筋及其它增强结构加强筋及其它增强结构 3.4.5 3.4.5 增加刚性减少变形的其他措施增加刚性减少变形的其
9、他措施3.4.6 3.4.6 塑件支承面的设计塑件支承面的设计3.4.7 3.4.7 塑件圆角的设计塑件圆角的设计3.4.8 3.4.8 塑件孔的设计塑件孔的设计3.4.9 3.4.9 采用型芯拼合复杂型孔采用型芯拼合复杂型孔3.4.1 3.4.1 脱模斜度设计脱模斜度设计 当塑件成型后因塑料收缩而包紧型芯,若塑件外形较复杂时,塑件的多个面与型芯紧贴,从而脱模阻力较大。为防止脱模为防止脱模时塑件的表面被檫伤和推顶变形,时塑件的表面被檫伤和推顶变形,需设脱模斜度。如图如图3-73-7 一般来说,塑件高度在25mm25mm以下者可不考虑脱模斜度。但是,如果塑件结构复杂,即使脱模高度仅几毫米,也必须
10、认真设计脱模斜度。热塑性塑料件脱模斜度取0.5-3.0。热固性酚醛压塑件取0.5-1.0。塑件内孔的脱模斜度以小端为准,符合图样要求,斜度由扩大方向得到;外形以大端为准,符合图样要求,斜度由缩小方向得到。塑料收缩率大,塑件壁厚大则脱模斜度取大些。对塑件高度或深度较大的尺寸,应取较小的脱模斜度。3.4.1 3.4.1 脱模斜度设计脱模斜度设计脱模斜度的选择原则脱模斜度的选择原则:3.4.1 3.4.1 脱模斜度设计脱模斜度设计l 设计塑件时如果未注明斜度,模具设计时l必须考虑脱模斜度。模具上脱模斜度留取方向是:l 型芯是以小端为基准,向扩大方向取。型芯是以小端为基准,向扩大方向取。l 型腔是以大
11、端为基准,向缩小方向取。型腔是以大端为基准,向缩小方向取。l 这样规定斜度方向有利于型芯和型腔径向尺寸修整。斜度大小应在塑件径向尺寸公差范围内选取。当塑件尺寸精度与脱模斜度无关时,应尽量地选取较大的脱模斜度。当塑件尺寸精度要求严格时,可以在其尺寸公差范围内确定较为适当的脱模斜度。l 塑件内表面的脱模斜度应大于其外表面的脱模斜度塑件内表面的脱模斜度应大于其外表面的脱模斜度。l常用常用脱模斜度见脱模斜度见p225表表7.83.4.2 3.4.2 塑件壁厚设计塑件壁厚设计 塑件的最小壁厚应满足的条件:*保证塑件的使用时的强度和刚度。*使塑料熔体充满整个型腔。塑件壁厚过小,则塑料充模流动的阻力很大,对
12、于形状复杂或大型塑件成型较困难。塑件壁厚过大,则不但浪费塑料原料,而且还给成型带来困难,尤其降低了塑件的生产率,还给塑件带来内部气孔、外部凹陷等缺陷。所以正确设计塑件的壁厚非常重要。壁厚取值应当合理。就设计原则来说要求同一塑件各处的壁厚均匀一致,否则制品成型收缩不均,易产生内应力,导致制品开裂、变形。如图3-9,3-10,3-11.当无法避免壁厚不均时,可做成倾斜的形状,如图,使壁厚逐渐过渡。或者使壁厚相差过大的两分别成型然后粘合成为制品。P220表表7.47.4、表、表7.57.5分别列出了热塑性塑料于热固性塑料的壁厚。3.4.2 3.4.2 塑件壁厚设计塑件壁厚设计3.4.3 3.4.3
13、加强筋及其它增强结构加强筋及其它增强结构 为了提高塑件的强度和防止塑件翘曲变形,常设计加强筋,如图筋的设置位置应沿塑料充模流向,降低充模流动阻力见图3-12 加强筋的正确形状和尺寸比例如图3-15所示。3.4.4 3.4.4 加强筋的主要形式加强筋的主要形式 加强筋的设计原则加强筋的设计原则:沿塑料流向设置,从而降低塑料的充模流动阻力。如图3-13应避免或减少塑料的局部集中,以防止产生凹陷和气泡。如图3-14加强筋以设计矮一些多一些为好。筋与筋的间隔距离应大于塑件的壁厚。3.4.5 3.4.5 增加刚性减少变形的其他措施增加刚性减少变形的其他措施 将薄壳状的塑件设计为球面,拱曲面等,可以有效地
14、增加刚性、减少变形。3.4.5 3.4.5 增加刚性减少变形的其他措施增加刚性减少变形的其他措施 薄壁容器的沿口是强度、刚性薄弱处赐于开裂变形损坏,故应按照下图所示方法来给予加强。当塑件较大、较高时,可在其内壁及外壁设计纵向圆柱、沟槽或波纹状形式的增强结构。3.4.6 3.4.6 塑件支承面的设计塑件支承面的设计 当塑件上有一面作为支承面来使用时,将该面设计为一个整面是不合理的,应采用如图3-19所示结构。因为平板状在成型收缩后很容易翘曲变形,稍许不平都会影响良好的支承作用,故以边框式或点式(三点或四点)结构设计塑件支承面。如下图塑料盘所示。3.4.6 3.4.6 塑件支承面的设计塑件支承面的
15、设计 当塑件底部有加强筋时,应使加强筋高度低于支承面至少0.5mm。如图3-20 紧固用的凸耳或台阶应有足够的强度,以承受紧固时的作用力。应避免台阶突然过渡和支承面过小,凸耳应用加强筋加强,如图3-21.3.4.6 3.4.6 塑件支承面的设计塑件支承面的设计3.4.7 3.4.7 塑件圆角的设计塑件圆角的设计 塑件除了必须要保留的尖角外,凡转角处应采用圆弧过渡。一般即使取0.5也可以增加塑件的强度。设计塑件内外表面转角圆角时,应象图3-22所示确定内外圆角半径。塑件设计成圆角的作用:避免产生应力集中。提高了塑件强度。利于塑料的充模流动。塑件对应模具型腔部位设计成圆角,可以使模具在淬火和使用时
16、不致因应力集中而开裂,提高模具的坚固性。3.4.8 3.4.8 塑件上孔的设计塑件上孔的设计 孔与孔的距离,孔边至塑件边缘距离应不小于孔径。热固性塑料见表7.7。固定用孔因承受较大负荷,可设计周边增厚来加强。如图3-23所示。塑件上的孔分通孔和盲孔两大类,下面分别介绍它的成型方法。成型通孔时型芯的这三种结构形式,是根据通孔大小和深度的具体情况从而满足型芯足够的抗弯能力的需要出发而设计。如图3-243.4.8 塑件上孔的设计 盲孔:盲孔只能用一端固定的型芯来成型。为避免型芯弯曲,对于注射和压注成型,孔深不得大于孔径的倍;对于压缩成型,平行于施压方向的孔深度为孔径的倍对于细长型芯,为防止其弯曲变形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精选 72 结构 工艺 jej
限制150内