2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题训练练习题(无超纲).docx
《2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题训练练习题(无超纲).docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形ABCD内接于O,点P在上,则下列角中可确定大小的是()APCBBPBCCBPCDPBA2、如图,面积为
2、18的正方形ABCD内接于O,则O的半径为( )ABC3D3、直角三角形PAB一条边为AB,另一顶点P在直线l上,下面是三个学生做直角三角形的过程以及自认为正确的最终结论:甲:过点A作l的垂线,垂足为P1;过点B作l的垂线,垂足为P2;作AP3BP3故符合题意的点P有三处;乙:以AB为直径作圆O,O与交l于两点P1、P2,故符合题意的点P有两处;丙:过点A作P1AAB,垂足为A,交l于点P1;过点B作P2BAB,垂足为B,交l于点P2故符合题意的点P有两处下列说法正确的是() A甲的作法和结论均正确B乙、丙的作法和结论合在一起才正确C甲、乙、丙的作法和结论合在一起才正确D丙的作法和结论均正确4
3、、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mABCD2005、已知O的半径为5,若点P在O内,则OP的长可以是()A4B5C6D76、如图,是正方形的外接圆,若的半径为4,则正方形的边长为( )A4B8CD7、如图,AB为的直径,C、D为上两点,则AB的长度为( )A6B3C9D128、如图,直径AB6的半圆,绕B点顺时针旋转30,此时点A到了点A,则图中阴影部分的面积是()ABCD39、如图,BD是O的切线,BCE30,则D()A40B50C60D3010、如图,四边形ABCD内接于O,连接BD,若,BDC50,则ADC的
4、度数是()A125B130C135D140第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,为的直径,弦于点,则的长为_2、如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BGAE于点G,连接CG并延长交AD于点F,则AF的最大值是_3、往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm,则水面AB的宽度为_cm4、一个正多边形的中心角是,则这个正多边形的边数为_5、如图,将RtABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,ABC38,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将AB
5、C分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 _三、解答题(5小题,每小题10分,共计50分)1、已知AB是O的直径,点C在O上,D为弧BC的中点(1)如图,连接AC,AD,OD,求证:ODAC;(2)如图,过点D作DEAB交O于点E,直径EF交AC于点G,若G为AC的中点,O的半径为2,求AC的长2、如图,AB为O的直径,弦于,连接,过作,交O于点,连接DF,过作,交DF的延长线于点(1)求证:BG是O的切线;(2)若,DF=4,求FG的长3、如图,四边形ABCD为平行四边形,以AD为直径的O交AB于点E,连接DE,DA2,DE,DC5过点E作直线l过点C作CHl,垂足为H(
6、1)若lAD,且l与O交于另一点F,连接DF,求DF的长;(2)连接BH,当直线l绕点E旋转时,求BH的最大值;(3)过点A作AMl,垂足为M,当直线l绕点E旋转时,求CH4AM的最大值4、如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD已知(1)求证:AD是O的切线(2)若OB2,CAD30,则的长为 5、如图,为O的直径,半径于O,O的弦与相交于点F,O的切线交的延长线于点E(1)求证:;(2)若O的半径长为3,且,求的长-参考答案-一、单选题1、C【分析】由题意根据正方形的性质得到BC弧所对的圆心角为90,则BOC=90,然后根
7、据圆周角定理进行分析求解【详解】解:连接OB、OC,如图,正方形ABCD内接于O,所对的圆心角为90,BOC=90,BPC=BOC=45故选:C【点睛】本题考查圆周角定理和正方形的性质,确定BC弧所对的圆心角为90是解题的关键2、C【分析】连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3【详解】解:如图,连接OA,OB,则OA=OB,四边形ABCD是正方形,是等腰直角三角形,正方形ABCD的面积是18,即:故选C【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键3、B【分析】根据三个学生的作法作出图形即可判断【详
8、解】解:甲的作图如下,不是直角三角形,故甲的不正确乙:如图,根据直径所对的圆周角是直角可知,乙的作法正确,但不完整,丙的作法如下,丙的作法也正确,但不完整,乙、丙的作法和结论合在一起才正确故选B【点睛】本题考查了直角三角形的判定,直径所对的圆周角是直角,根据题意作出图形是解题的关键4、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可【详解】解:连接BD,如下图所示:与所对的弧都是 所对的弦为直径AD, 又,为等腰直角三角形,在中,由勾股定理可得: 故选:B【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理
9、,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路5、A【分析】根据点与圆的位置关系可得,由此即可得出答案【详解】解:的半径为5,点在内,观察四个选项可知,只有选项A符合,故选:A【点睛】本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键6、D【分析】连接OB,OC,过点O作OEBC于点E,由等腰直角三角形的性质可知OE=BE,由垂径定理可知BC=2BE,故可得出结论【详解】解:连接OB,OC,过点O作OEBC于点E,OB=OC,BOC=90,OBE=45, OE=BE,OE2+BE2=OB2,BC=
10、2BE=,即正方形ABCD的边长是故选:D【点睛】本题考查的是圆周角定理、垂径定理及勾股定理,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键7、A【分析】连接AC,利用直角三角形30的性质求解即可【详解】解:如图,连接AC AB是直径, ACB=90, CAB=CDB=30, AB=2BC=6, 故选:A【点睛】本题考查圆周角定理,含30角的直角三角形的性质,解题的关键是学会添加常用辅助线,构造直角三角形解决问题8、D【分析】阴影面积为旋转后为直径的半圆面积加旋转后扇形面积减去旋转前为直径的半圆面积,则阴影面积为旋转后的扇形面积,由扇形面积公式计算即可【详解】直径AB6的半圆,绕B点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 基础 强化 北师大 九年级 数学 下册 第三 专题 训练 练习题 无超纲
限制150内