2021-2022学年2022年沪科版九年级数学下册专题测试-卷(Ⅲ)(含答案详解).docx
《2021-2022学年2022年沪科版九年级数学下册专题测试-卷(Ⅲ)(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年2022年沪科版九年级数学下册专题测试-卷(Ⅲ)(含答案详解).docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年沪科版九年级数学下册专题测试 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、7个小正方体按如图所示的方式摆放,则这个图形的左视图是( )A
2、 BC D2、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为( )A10B12C15D183、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm4、如图,在RtABC中,点D、E分别是AB、AC的中点将ADE绕点A顺时针旋转60,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:AECADB;CP存在最大值为;BP存在最小值为;点P运动的路径长为其中,正
3、确的( )ABCD5、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()A1cmB2cmC2cmD4cm6、如图,ABCD是正方形,CDE绕点C逆时针方向旋转90后能与CBF重合,那么CEF是() 线 封 密 内 号学级年名姓 线 封 密 外 A.等腰三角形B等边三角形C.直角三角形D.等腰直角三角形7、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD8、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD9、如图,与相切于点,连接交于点,点为优弧上一点,连接,若,的半径,则的长为( )A4BCD110、小张同学去展览馆看展览,该展览馆有A、B两个验票
4、口(可进可出),另外还有C、D两个出口(只出不进)则小张从不同的出入口进出的概率是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在RtABC中,ACB90,ACAB,点E、F分别是边CA、CB的中点,已知点P在线段EF上,联结AP,将线段AP绕点P逆时针旋转90得到线段DP,如果点P、D、C在同一直线上,那么tanCAP_2、如图,已知O的半径为2,弦AB的长度为2,点C是O上一动点若ABC为等腰三角形,则BC2为 _3、已知一个扇形的半径是1,圆心角是120,则这个扇形的面积是_4、小明和小强玩“石头、剪刀、布”游戏,按照“石头胜剪刀,剪刀胜布,布胜石头
5、,相同算平局”的规则,两人随机出手一次,平局的概率为_5、已知A的半径为5,圆心A(4,3),坐标原点O与A的位置关系是_三、解答题(5小题,每小题10分,共计50分)1、如图,在66的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上请按要求在图,图,图中画图:(1)在图中,画等腰ABC,使AB为腰,点C在格点上(2)在图中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上(3)在图中,画ABC,使ACB=90,面积为5,点C在格点上 线 封 密 内 号学级年名姓 线 封 密 外 2、元元同学在数学课上遇到这样一个问题:
6、如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC作AELOB于E、AFOC于F、(依据是 ),(依据是 ),BC是的直径(依据是 ),A的坐标为( )的半径为 3、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺
7、序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率4、如图,在直角坐标平面内,已知点A的坐标(2,0)(1)图中点B的坐标是_;(2)点B关于原点对称的点C的坐标是_;点A关于y轴对称的点D的坐标是_;(3)四边形ABDC的面积是_;(4)在y轴上找一点F,使,那么点F的所有可能位置是_5、如图,已知在中,D、E是BC边上的点,将绕点A旋转,得到,连接(1)当时,时,求证:;(2)当时,与有怎样的数量关系?请写出,并说明理由(3)在(2)的结论下,当,BD与DE满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必证明) 线
8、封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、C【分析】细心观察图中几何体摆放的位置,根据左视图是从左面看到的图象判定则可【详解】解:从左边看,是左边3个正方形,右边一个正方形故选:C【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图2、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可【详解】解:由题意可得,解得,a=15经检验,a=15是原方程的解故选:C【点睛】本题利用了用大量试验得到的频率可以估计事件的概率关键是根据白球的频率得到相应的等量关系3、C【分析】
9、连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为,在中,即水的最大深度为,故选:C 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键4、B【分析】根据,点D、E分别是AB、AC的中点得出DAE=90,AD=AE=,可证DAB=EAC,再证DABEAC(SAS),可判断AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,根据AECADB,得出DBA=ECA,可证P=
10、BAC=90,CP为A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在RtAEC中,CE=,可判断CP存在最大值为正确;AECADB,得出BD=CE=,在RtBPC中,BP最小=可判断BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,可求ACE=30,根据圆周角定理得出AOP=2ACE=60,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,可得ABD=30根据圆周角定理得出AOP=2ABD=60,点P在以点O为圆心,OA长为半径,
11、的圆上运动轨迹为,L可判断点P运动的路径长为正确即可【详解】解:,点D、E分别是AB、AC的中点DAE=90,AD=AE=,DAB+BAE=90,BAE+EAC=90,DAB=EAC,在DAB和EAC中,DABEAC(SAS),故AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,AECADB,DBA=ECA,PBA+P=ECP+BAC,P=BAC=90,CP为A的切线,AECP,DPE=PEA=DAE=90,四边形DAEP为矩形,AD=AE,四边形DAEP为正方形,PE=AE=3,在RtAEC中,CE=, 线 封 密 内 号学级年名姓 线 封 密 外 CP最大=P
12、E+EC=3+,故CP存在最大值为正确;AECADB,BD=CE=,在RtBPC中,BP最小=,BP最短=BD-PD=-3,故BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,ACE=30,AOP=2ACE=60,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,ABD=30,AOP=2ABD=60,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,POP=POA+AOP=60+60=120,L故点P运动的路径长为正确;正确的是故选B【点睛
13、】本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键5、D【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据圆内接正六边形的性质可得AOB是正三角形,由面积公式可求出半径【详解】解:如图,由圆内接正六边形的性质可得AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OAsinOAB=, 圆O的内接正六边形的面积为(cm2), AOB的面积为(cm2), 即, , 解得r=4, 故选:D【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题
14、的关键6、D【分析】根据旋转的性质推出相等的边CECF,旋转角推出ECF90,即可得到CEF为等腰直角三角形【详解】解:CDE绕点C逆时针方向旋转90后能与CBF重合,ECF90,CECF,CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键7、B【分析】根据“把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 年沪科版 九年级 数学 下册 专题 测试 答案 详解
限制150内