2021-2022学年北师大版七年级数学下册期末专项测评-卷(Ⅰ)(含答案及详解).docx
《2021-2022学年北师大版七年级数学下册期末专项测评-卷(Ⅰ)(含答案及详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版七年级数学下册期末专项测评-卷(Ⅰ)(含答案及详解).docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 北师大版七年级数学下册期末专项测评 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式运算的结果可以表示为( )ABCD2、在一个不透明的口袋中
2、装有除颜色外其它都相同的5个红球和3个白球,第一次任意从口袋中摸出一个球来不放回,则第二次摸到白球的概率为( )ABCD3、已知,则a,b,c的大小关系是( )ABCD4、小明把一副含有45,30角的直角三角板如图摆放其中CF90,A45,D30,则a+等于( )A180B210C360D2705、标标抛掷一枚点数从16的正方体骰子12次,有7次6点朝上当他抛第13次时, 6点朝上的概率为( )ABCD6、如图,C、D在线段BE上,下列说法:直线CD上以B、C、D、E为端点的线段共有6条;图中至少有2对互补的角;若BAE=90,DAC=40,则以A为顶点的所有小于平角的角的度数和360;若BC
3、=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有( )A1个B2个C3个D4个7、如图,在RtABC中,=90,沿着过点B的一条直线BE折叠ABC,使点C恰好落在AB的中点D处,则的度数为( ) 线 封 密 内 号学级年名姓 线 封 密 外 A30B45C60D758、在行进路程、速度和时间的相关计算中,若保持行驶的路程不变,则下列说法正确的是( )A速度是变量B时间是变量C速度和时间都是变量D速度、时间、路程都是常量9、下列命题中,为真命题的是( )A若,则B若,则C同位角相等D对顶角相等10、如图,李大爷用米
4、长的篱笆靠墙围成一个矩形菜园,若菜园靠墙的一边长为(米),那么菜园的面积(平方米)与的关系式为( )ABCD第卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、同一温度的华氏度数y()与摄氏度数x()之间的函数关系是yx+32,如果某一温度的摄氏度数是25,那么它的华氏度数是_2、计算:_3、(1)已知与互余,且,则_(2)+_180(3)若与是同类项,则m+n=_4、小明和小颖下棋,小明执圆子,小颖执方子如图,棋盘中心方子的位置用(0,1)表示,右上角方子的位置用(1,0)表示小明将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形他放的位置可以表示为_5、已知一纸箱中,
5、装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为 _6、汽车以60千米/小时的速度匀速行驶,随着时间t(时)的变化,汽车的行驶路程s(千米)也随着变化,则它们之间的关系式为 _.7、已知变量y与x的部分对应值如表格所示,则y与x的关系式是_.x1234y121416188、已知一个角的补角是这个角的余角的3倍,则这个角是_度9、如图,在22的方格纸中有一个以格点为顶点的ABC,则与ABC成轴对称且以格点为顶点三角形共有_个10、已知,则的余角是_三、解答题(5小题,每小题8分,共计40分) 线 封 密 内 号学级年名姓 线 封 密 外 1、一个密码锁
6、的密码由四个数字组成,每个数字都是09这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开粗心的小明忘了中间的两个数字,他一次就能打开该锁的概率是多少?2、如图是芳芳自己设计的可以自由转动的转盘,转盘被等分成12个扇形,上面有12个有理数求转出的数是:(1)正数的概率;(2)负数的概率;(3)绝对值小于6的数的概率;(4)相反数大于或等于8的数的概率3、(1)请写出三个代数式(a+b)2、(ab)2和ab之间数量关系式 (2)应用上一题的关系式,计算:xy3,xy4,试求x+y的值(3)如图,线段AB10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和
7、正方形CBGF,连接AF;若两个正方形的面积S1+S232,求阴影部分ACF面积4、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,交于点Q求证:同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由5、已知中,平分,求的度数-参考答案-一、单选题1、B【分析】分析对每个选项进行计算,再判断即可【详解】A选项:,故A错误;B选项:,故B正确;C选项:,故C错误; 线 封 密 内 号学级年名姓 线 封
8、 密 外 D选项:,故D错误故选B【点睛】考查了幂的乘方、同底数幂的乘附法,解题关键是熟记其计算公式2、B【分析】画树状图,表示出等可能的结果,再由概率公式求解即可【详解】依题意画树状图如下:故第二次摸到白球的概率为故选B【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率3、A【分析】根据幂的乘方的逆运算可直接进行排除选项【详解】解:,;故选A【点睛】本题主要考查幂的乘方的逆用,熟练掌握幂的乘方的逆用是解题的关键4、B【分析】已知,得到,根据外角性质,得到,再将两式相加,等量代换,即可得
9、解;【详解】解:如图所示, 线 封 密 内 号学级年名姓 线 封 密 外 ;故选D【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键5、D【分析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】解:掷一颗均匀的骰子(正方体,各面标这6个数字),一共有6种等可能的情况,其中6点朝上只有一种情况,所以6点朝上的概率为故选:D【点睛】本题考查概率的求法与运用,解题的关键是掌握一般方法:如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)6、B【分析】按照两个端点确定一条线段即可判断;
10、根据补角的定义即可判断;根据角的和差计算机可判断;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断【详解】解:以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确; 图中互补的角就是分别以C、D为顶点的两对邻补角,即BCA和ACD互补,ADE和ADC互补,故此说法正确;由BAE=90,CAD=40,根据图形可以求出BAC+DAE+DAC+BAE+BAD+CAE=3BAE+CAD=310,故此说法错误;如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图
11、2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,BC=2,CD=DE=3,当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误 故选B【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解7、A【分析】根据题意可知CBE=DBE,DEAB,点D为AB的中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 北师大 七年 级数 下册 期末 专项 测评 答案 详解
限制150内