243正多边形和圆 (3).ppt
《243正多边形和圆 (3).ppt》由会员分享,可在线阅读,更多相关《243正多边形和圆 (3).ppt(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、各边相等各边相等,各角也相等的多边形叫做正多边形各角也相等的多边形叫做正多边形正正n n边形:边形:如果一个正多边形有如果一个正多边形有n n条边,那么条边,那么这个正多边形叫做这个正多边形叫做正正n n边形。边形。三条边相等三条边相等三个角相等三个角相等(60度)。度)。四条边相等四条边相等四个角相等四个角相等(900)正三正三角形角形正方形正方形一一 .正多边形定义正多边形定义问题问题1,什么样的图形是正多边形?,什么样的图形是正多边形?各边相等各边相等,各角也相等各角也相等的多边形是的多边形是正多边形正多边形.练习练习:1.矩形是正多边形吗矩形是正多边形吗?菱形呢菱形呢?正方形呢正方形呢
2、?为什么为什么?矩形不是正多边形,因为四条边不都相等矩形不是正多边形,因为四条边不都相等;菱形不是正多边形,因为菱形的四个角不都相等菱形不是正多边形,因为菱形的四个角不都相等;正方形是正多边形因为四条边都相等,四个角都相等正方形是正多边形因为四条边都相等,四个角都相等.3.正多边形都是轴对称图形,一个正正多边形都是轴对称图形,一个正n边形共有边形共有n 条对称轴,每条对称轴都通过条对称轴,每条对称轴都通过n边形的中心。边形的中心。正多边形的性质及对称性正多边形的性质及对称性4.边数是偶数的正多边形还是中心对称图形,边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心。它的中心就是对称中心
3、。1、正多边形的各边相等、正多边形的各边相等2、正多边形的各角相等、正多边形的各角相等正正n边形与圆的关系边形与圆的关系1.把正把正n边形的边数无限增多边形的边数无限增多,就接近于圆就接近于圆.2.怎样由圆得到多边形呢?怎样由圆得到多边形呢?ABCD思考思考1:把一个圆把一个圆4等分等分,并依次连并依次连 接这些点接这些点,得到正多边形吗得到正多边形吗?弧相等弧相等弦相等(多边形的边相等)弦相等(多边形的边相等)圆周角相等(多边形的角相等)圆周角相等(多边形的角相等)多边形是正多边形多边形是正多边形思考思考2:把一个圆把一个圆5等分等分,并依次连接这些点并依次连接这些点,得到正多边形吗得到正多
4、边形吗?证明:证明:AB=BC=CD=DE=EAABCDE AB=BC=CD=DE=EA BCE=CDA=3ABA=B同理同理 B=C=D=EA=B=C=D=E又又 顶点顶点A、B、C、D、E都在都在O上上 五边形五边形ABCDE是是O的的 内接正五边形内接正五边形.定义:定义:把圆分成把圆分成n n(n3n3)等份:)等份:依次连结各分点所得的多边形是这个圆依次连结各分点所得的多边形是这个圆 的的内接正多边形内接正多边形.EFCD.O O中心角中心角半径半径R R边心距边心距r r正多边形的中心正多边形的中心:一个正多边形的一个正多边形的 外接圆的圆心外接圆的圆心.正多边形的半径正多边形的半
5、径:外接圆的半径外接圆的半径正多边形的中心角正多边形的中心角:正多边形的每一条正多边形的每一条 边所对的圆心角边所对的圆心角.正多边形的边心距:正多边形的边心距:中心到正多边形的中心到正多边形的 一边的距离一边的距离.二二.正多边形有关的概念正多边形有关的概念AB新课讲解新课讲解中心中心EDCBAO半径半径中心角中心角边心距边心距正多边形中的有关概念:正多边形中的有关概念:F既是外接圆的圆心,也是内切圆的圆心既是外接圆的圆心,也是内切圆的圆心每个每个正多边形正多边形的半径,分别将它们分割成什么的半径,分别将它们分割成什么样的三角形?它们有什么规律?样的三角形?它们有什么规律?正正n n边形的边
6、形的n n条半径分正条半径分正n n边形为边形为n n个全等的等个全等的等腰三角形腰三角形 正多边形与三角形正多边形与三角形作每个正多边形的边心距,又有什么规律?作每个正多边形的边心距,又有什么规律?边心距又把这边心距又把这n n个等腰三角形分成了个等腰三角形分成了2n2n个直角个直角三角形,这些直角三角形也是全等的三角形,这些直角三角形也是全等的EFCD.O O中心角中心角中心角中心角A AB BG G G G边心距把边心距把AOBAOB分成分成2 2个个全等的直角三角形全等的直角三角形设正多边形的边长为设正多边形的边长为a,a,半径为半径为R R,它的周长为它的周长为L=naL=na.R
7、Ra a新课讲解新课讲解EDCBAOF中心角与内角互补中心角与内角互补正正n n边形的一个内角的边形的一个内角的度数是度数是_;_;中心角是中心角是_;_;正多边形的中心角与外角的大小关正多边形的中心角与外角的大小关系是系是_._.相等相等抢答题:抢答题:1.o1.o是正是正与与 的圆心。的圆心。ABCABC的中心,它是的中心,它是ABCABC的的2 2、OBOB叫正叫正ABCABC的的它是正它是正ABCABC的的 的半径。的半径。3 3、ODOD叫作正叫作正ABCABC的的它是正它是正ABCABC的的 的半径。的半径。ABC.OD半径半径外接外接圆圆边心距边心距内切圆内切圆外接外接圆圆内切内
8、切圆圆4、正方形、正方形ABCD的外接圆圆心的外接圆圆心O叫做叫做正方形正方形ABCD的的5、正方形、正方形ABCD的内切圆的半径的内切圆的半径OE叫做叫做正方形正方形ABCD的的ABCD.OE中心中心边心距边心距6、O是正五边形是正五边形ABCDE的外接圆,弦的外接圆,弦AB的的弦心距弦心距OF叫正五边形叫正五边形ABCDE的的,它是正五边形它是正五边形ABCDE的圆的半径。的圆的半径。7、AOB叫做正五边形叫做正五边形ABCDE的角,的角,它的度数是它的度数是DEABC.OF边心距边心距内切内切中心中心72度度8 8、图中正六边形、图中正六边形ABCDEFABCDEF的中心角是(的中心角是
9、()它的度数是(它的度数是()9 9、你发现正六边形、你发现正六边形ABCDEFABCDEF的半径与边长具有的半径与边长具有什么数量关系?为什么?什么数量关系?为什么?BAEFCD.OAOB60度度解答:正六边形的半径与边解答:正六边形的半径与边长数量关系是相等长数量关系是相等因为:正六边形的中心角因为:正六边形的中心角是是6060度和半径组成的三角度和半径组成的三角形是等边三角形,所以边形是等边三角形,所以边长与半径相等。长与半径相等。例例1、有一个亭子它的地基是半径为有一个亭子它的地基是半径为4m的正六边的正六边形,形,求地基的周长和面积求地基的周长和面积FADE.O O O OB BC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 243正多边形和圆 3 243 正多边形
限制150内