动力学(达朗贝尔原理).ppt
《动力学(达朗贝尔原理).ppt》由会员分享,可在线阅读,更多相关《动力学(达朗贝尔原理).ppt(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、6-1 惯性力惯性力质点的达朗贝尔原理质点的达朗贝尔原理6-2 质点系的达朗贝尔原理质点系的达朗贝尔原理第第6 6章章 达朗贝尔原理达朗贝尔原理结论与讨论结论与讨论习题习题6-3 刚体惯性力系的简化刚体惯性力系的简化6-4 绕定轴转动刚体的动约束力绕定轴转动刚体的动约束力第第6 6章章 达朗贝尔原理达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理作用在质点上的主动力、约束力和虚作用在质点上的主动力、约束力和虚加的惯性力在形式上组成平衡力系。加的惯性力在形式上组成平衡力系。In bmgT解:取小球为研究对象解:取小球为研究对象受力分析、加惯性力列平衡方程受力分析、加惯性力列平衡方程例一例一 小球
2、作匀速圆周运动,质量小球作匀速圆周运动,质量m=0.1kg,l=0.3m,=600 。求求:绳的拉力及小球的速度。绳的拉力及小球的速度。第第6 6章章 达朗贝尔原理达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理第第6 6章章 达朗贝尔原理达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理:作用在质点系上的外力与虚加质点系的达朗贝尔原理:作用在质点系上的外力与虚加质点系的达朗贝尔原理:作用在质点系上的外力与虚加质点系的达朗贝尔原理:作用在质点系上的外力与虚加在每个质点上的惯性力在形式上组成平衡力系。在每个质点上的惯性力在形式上组成平衡力系。在每个质点上的惯性力在形式上组成
3、平衡力系。在每个质点上的惯性力在形式上组成平衡力系。第第6 6章章 达朗贝尔原理达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理解:解:取取1/4飞轮为研究对象,由对称性可飞轮为研究对象,由对称性可知受力分析如图。添加惯性力后由知受力分析如图。添加惯性力后由静力平衡方程有:静力平衡方程有:用相同方法用相同方法计算计算FB由于截面对称,任一横截面张力相同。由于截面对称,任一横截面张力相同。例一例一飞轮质量为飞轮质量为m,半径为,半径为R,以匀角速度,以匀角速度 转动,轮缘较薄,转动,轮缘较薄,质量均匀分布,轮辐质量不计。求轮缘横截面上的张力。质量均匀分布,轮辐质量不计。求轮缘横截面上的张力。
4、第第6 6章章 达朗贝尔原理达朗贝尔原理例二例二 滑轮半径为滑轮半径为r,质量,质量m均匀分布在轮缘上,绕水平轴转动。均匀分布在轮缘上,绕水平轴转动。轮缘上跨过的软绳的两端各挂质量为轮缘上跨过的软绳的两端各挂质量为m1和和m2的重物,且的重物,且 m1 m2。绳的重量不计,绳与滑轮之间无相对滑动,摩擦不。绳的重量不计,绳与滑轮之间无相对滑动,摩擦不 计。求重物的加速度。计。求重物的加速度。取整个质点系为研究对象:受力分析、加惯性力取整个质点系为研究对象:受力分析、加惯性力质点系的达朗贝尔原理质点系的达朗贝尔原理第第6 6章章 达朗贝尔原理达朗贝尔原理刚体惯性力系的简化刚体惯性力系的简化二、刚体
5、作定轴转动二、刚体作定轴转动一般取定轴一般取定轴O为简化中心为简化中心一、刚体作平动一、刚体作平动平动刚体惯性力系简化为通过质心的合力平动刚体惯性力系简化为通过质心的合力刚体作定轴转动时刚体作定轴转动时,惯性力系简惯性力系简化为通过化为通过O点的一力和一力偶。点的一力和一力偶。惯性力系简化为平面内一个力和一个力偶:惯性力通过质心,惯性力系简化为平面内一个力和一个力偶:惯性力通过质心,大小等于质量与质心加速度的乘积,大小等于质量与质心加速度的乘积,方向与质心加速度方向相方向与质心加速度方向相反;惯性力偶矩大小等于通过质心且垂直于平面的轴的转动惯反;惯性力偶矩大小等于通过质心且垂直于平面的轴的转动
6、惯量与角加速度的乘积,转向与角加速度的转向相反。量与角加速度的乘积,转向与角加速度的转向相反。第第6 6章章 达朗贝尔原理达朗贝尔原理刚体惯性力系的简化刚体惯性力系的简化三、刚体作平面运动三、刚体作平面运动一般取质心一般取质心C为简化中心为简化中心刚体对轴的转动惯量刚体对轴的转动惯量在工程中,常将转动惯量表示为在工程中,常将转动惯量表示为设杆长为设杆长为l,单位长度的质量为单位长度的质量为m/l:1 1、均质细直杆对、均质细直杆对z轴的转动惯量轴的转动惯量2、均质薄圆环对中心轴的转动惯量、均质薄圆环对中心轴的转动惯量:设杆质量为设杆质量为m3、均质薄圆板对中心轴的转动惯量:、均质薄圆板对中心轴
7、的转动惯量:设圆板半径为设圆板半径为R,质量为,质量为m,单位面积的质量为单位面积的质量为 4、均质薄圆板对直径轴的转动惯量:、均质薄圆板对直径轴的转动惯量:试求试求:各均质物体对其转轴的转动惯量。各均质物体对其转轴的转动惯量。均质圆盘作定轴转动。试对图示四种情形向转轴进行惯均质圆盘作定轴转动。试对图示四种情形向转轴进行惯性力系的简化。性力系的简化。第第6 6章章 达朗贝尔原理达朗贝尔原理刚体惯性力系的简化刚体惯性力系的简化两种情形的定滑轮质量均为两种情形的定滑轮质量均为m,半径均为,半径均为r。图。图a中的绳所受中的绳所受拉力为拉力为W;图;图b中块重力为中块重力为W。试分析两种情形下定滑轮
8、的角。试分析两种情形下定滑轮的角加速度、绳中拉力和定滑轮轴承处的约束反力是否相同。加速度、绳中拉力和定滑轮轴承处的约束反力是否相同。例三例三 均质圆盘质量为均质圆盘质量为mA,半径为,半径为r,细长杆的长,细长杆的长 l=2r,质量为,质量为m。杆端点杆端点A与圆盘光滑铰接。如在与圆盘光滑铰接。如在A处加一水平力处加一水平力F使盘做纯使盘做纯滚动。问:力滚动。问:力F多大能使多大能使B端刚刚离开地面?又为保证纯滚端刚刚离开地面?又为保证纯滚动,盘与地面间的静滑动摩擦系数应为多大?动,盘与地面间的静滑动摩擦系数应为多大?第第6 6章章 达朗贝尔原理达朗贝尔原理刚体惯性力系的简化刚体惯性力系的简化
9、解:解:取杆为研究对象,受力分析取杆为研究对象,受力分析和运动分析如图,添加惯性和运动分析如图,添加惯性力后由静力平衡方程有:力后由静力平衡方程有:第第6 6章章 达朗贝尔原理达朗贝尔原理刚体惯性力系的简化刚体惯性力系的简化再取轮和杆系统为研究对象,受力分析和运动分析如图,添再取轮和杆系统为研究对象,受力分析和运动分析如图,添加惯性力后由静力平衡方程有:加惯性力后由静力平衡方程有:由静滑动摩擦关系有:由静滑动摩擦关系有:1 矩矩形形块块质质量量m1=100kg,置置于于平平台台车车上上,车车质质量量为为m2=50kg,此此车车沿沿光光滑滑的的水水平平面面运运动动,车车和和矩矩形形块块在在一一起
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动力学 达朗贝尔 原理
限制150内