《二次根式 (3).ppt》由会员分享,可在线阅读,更多相关《二次根式 (3).ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二二 次次 根根 式式三个概念两个公式三个性质四种运算二次根式二次根式最简二次根式最简二次根式同类二次根式同类二次根式12加加 、减、乘、除、减、乘、除知识结构知识结构(a0)二次根式的概念二次根式的概念形如形如(a 0)的式子的式子叫做二次根式叫做二次根式二次根式的定义:二次根式的定义:二次根式的识别:二次根式的识别:()被开方数()被开方数()根指数是()根指数是判别:下列各式中哪些是二次根式?判别:下列各式中哪些是二次根式?哪些不是?为什么?哪些不是?为什么?二次根式的性质二次根式的性质(1)(2)(3)(a0)题型题型1:确定二次根式中被开方数所含字母的取值范围确定二次根式中被开方数所
2、含字母的取值范围.1 1.当当 X X _时,时,有意义。有意义。3.3.求下列二次根式中字母的取值范围求下列二次根式中字母的取值范围解得解得 -5x-5x3 3解:解:说明:二次根式被开方数说明:二次根式被开方数不小于不小于0,所以求二次根,所以求二次根式中字母的取值范围常转式中字母的取值范围常转化为不等式(组)化为不等式(组)33a=4a=42.(2005.2.(2005.青岛青岛)+)+有意义的条件是有意义的条件是 二次根式二次根式题型题型2:二次根式的非负性的应用二次根式的非负性的应用.4.4.已知:已知:+=0,+=0,求求 x-yx-y 的值的值.5.(2005.5.(2005.湖
3、北黄冈市湖北黄冈市)已知已知x,yx,y为实数为实数,且且 +3(y-2)+3(y-2)2 2=0,=0,则则x-yx-y的值为的值为()A.3 B.-3 C.1 D.-1 A.3 B.-3 C.1 D.-1解:由题意,得解:由题意,得 x-4=0 x-4=0 且且 2x+y=02x+y=0解得解得 x=4,y=-8x=4,y=-8x-yx-y=4-(-8)=4+8=12=4-(-8)=4+8=12D D练练 习习抢答抢答:判断下列二次根式是否是最简二次根式判断下列二次根式是否是最简二次根式,并说明理由。并说明理由。满足下列两个条件的二次根式满足下列两个条件的二次根式,叫做最简二次根式叫做最简
4、二次根式(1)被开方数中不含分母)被开方数中不含分母(2)被开方数中不含能开得尽方的因数或因式)被开方数中不含能开得尽方的因数或因式化简二次根式的方法化简二次根式的方法:(1)如果被开方数是整数或整式时,先因数分解或因)如果被开方数是整数或整式时,先因数分解或因式分解式分解,然后利用积的算术平方根的性质然后利用积的算术平方根的性质,将式子化简。将式子化简。(2)如果被开方数是分数或分式时)如果被开方数是分数或分式时,先利用商的算术平先利用商的算术平方根的性质方根的性质,将其变为二次根式相除的形式将其变为二次根式相除的形式,然后利用分然后利用分母有理化母有理化,将式子化简。将式子化简。例例1:把
5、下列各式化成最简二次根式:把下列各式化成最简二次根式 例例2:把下列各式化成最简二次根式:把下列各式化成最简二次根式(a0)(x0)xyx2)2(2114)1(题型题型4同类二次根式同类二次根式:化为最简二次根式后被开方数相同的二次根式。、是同类二次根式下列哪些是同类二次根式同类二次根式?例例3、计算、计算例例4、计算、计算题型题型5:利用进行分解因式例5:分解因式:1要使下列式子有意义,求字母要使下列式子有意义,求字母 的取值范围的取值范围()()()()()()练习与反馈练习与反馈 2()()()当时,()当时,(),(),则的取值范围是则的取值范围是()若,()若,则的取值范围是则的取值
6、范围是2x试一试试一试:一个台阶如图,阶梯每一层高一个台阶如图,阶梯每一层高15cm15cm,宽,宽25cm25cm,长,长60cm.60cm.一只蚂蚁从一只蚂蚁从A A点点爬到爬到B B点最短路程是多少?点最短路程是多少?251515256060AB解:解:B151525256060A拓展拓展1 1设设a a、b b为实数为实数,且且|2-a|+b-2=0|2-a|+b-2=0 若若a为底为底,b为腰为腰,此时底边上的高为此时底边上的高为 三角形的面积为三角形的面积为(2)(2)若满足上式的若满足上式的a,ba,b为等腰三角形的两边为等腰三角形的两边,求这求这个等腰三角形的面积个等腰三角形的
7、面积.拓展拓展1 1设设a a、b b为实数为实数,且且|2-a|+b-2=0|2-a|+b-2=0 解解:若若a a为腰为腰,b,b为底为底,此时底边上的高为此时底边上的高为 三角形的面积为三角形的面积为A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。已知已知 ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 拓展拓展2
8、 2A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。已知已知 ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 拓展拓展2 2A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。已知已知 ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C
9、,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 拓展拓展2 2A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。已知已知 ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 拓展拓展2 2A
10、 AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。已知已知 ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 拓展拓展2 2A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。已知已知 ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则
11、AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 拓展拓展2 2A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。已知已知 ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 拓展拓展3 3 设设DP=aDP=a,请用含请用含a a的代数式表的代数式表示示APAP,BPBP。则则AP=_AP=_,BP=_BP=_。当当a=a=1 1 时,时,则则PA+PBPA+PB=_,=_,当当a=3,a=3,则则PA+PB=_PA+PB=_ PA+PBPA+PB是否存在一个最小值?是否存在一个最小值?ABCDPB本节课,你有收获吗?
限制150内