283《用频率估计概率》课件me.ppt
《283《用频率估计概率》课件me.ppt》由会员分享,可在线阅读,更多相关《283《用频率估计概率》课件me.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、*w必然事件必然事件w不可能事件不可能事件w可能性可能性0 (50%)1(100%)不可不可能发能发生生可可能能发发生生必然必然发生发生w随机事件随机事件(不确定事件不确定事件)回顾回顾*w概率概率 事件发生的可能性事件发生的可能性,也称为事件发生也称为事件发生的概率的概率.w必然事件发生的概率为必然事件发生的概率为1(1(或或100%),100%),记作记作P(P(必然事件必然事件)=1;)=1;w不可能事件发生的概率为不可能事件发生的概率为0,0,记作记作P(P(不可能事件不可能事件)=0;)=0;w随机事件随机事件(不确定事件不确定事件)发生的概率介于发生的概率介于0 0 1 1之之 间
2、间,即即0P(0P(不确定事件不确定事件)1.)1.w如果如果A A为为随机事件随机事件(不确定事件不确定事件),),那么那么0P(A)1.0P(A)1.*用列举法求用列举法求概率的条件是什么概率的条件是什么?(1)(1)实验的所有结果是有限个实验的所有结果是有限个(n)(n)(2)(2)各种结果的可能性相等各种结果的可能性相等.当当实验的所有结果不是有限个实验的所有结果不是有限个;或各种或各种可能结果发生的可能性不相等时可能结果发生的可能性不相等时.又该又该如何求事件发生的概率呢如何求事件发生的概率呢?*数学史实数学史实事实上,从长期实践中,人们观察到,对一般的随机事事实上,从长期实践中,人
3、们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性。定的稳定性。瑞士数学家雅各布瑞士数学家雅各布伯努利(伯努利(1654165417051705被公认为是概率论的先驱之被公认为是概率论的先驱之一,他最早阐明了随着试验次数的一,他最早阐明了随着试验次数的增加,频率稳定在概率附近。增加,频率稳定在概率附近。归纳:归纳:一般地,在大量重复试验中,如一般地,在大量重复试验中,如果事件果事件A发生的频率发生的频率 会稳定在
4、会稳定在某个常数某个常数p附近,那么事件附近,那么事件A发发生的概率生的概率P(A)=p。用频率估计的概率可能用频率估计的概率可能小于小于0吗?可能大于吗?可能大于1吗吗?(1)实验得出的频)实验得出的频率只是概率的率只是概率的近似值近似值。(2)用频率估计的用频率估计的概率概率不不可能小于可能小于0也也不不可能大于可能大于1。(3)概率是针对)概率是针对大大量实验量实验而言的。而言的。材料1:在重复抛掷一枚硬币时,在重复抛掷一枚硬币时,在重复抛掷一枚硬币时,在重复抛掷一枚硬币时,“正面向上正面向上正面向上正面向上”的的的的频率在频率在频率在频率在0.50.50.50.5左右摆动左右摆动左右摆
5、动左右摆动。随着抛掷次数的。随着抛掷次数的。随着抛掷次数的。随着抛掷次数的增加,一般的,增加,一般的,增加,一般的,增加,一般的,频率呈现一定的稳定性频率呈现一定的稳定性频率呈现一定的稳定性频率呈现一定的稳定性:在:在:在:在0.50.50.50.5左右摆动的幅度会越来越小。左右摆动的幅度会越来越小。左右摆动的幅度会越来越小。左右摆动的幅度会越来越小。这时,我们称这时,我们称这时,我们称这时,我们称“正面向上正面向上正面向上正面向上”的的的的频率稳定于频率稳定于频率稳定于频率稳定于0.50.50.50.5.思考:随着抛掷次数的增加,思考:随着抛掷次数的增加,“正面向上正面向上”的频率的频率的变
6、化趋势有何变化?的变化趋势有何变化?材料材料2:则估计油菜籽发芽的概率为则估计油菜籽发芽的概率为0.9*例:例:张小明承包了一片荒山,他想把这片荒山改造成一个苹果张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗可以选择,它们的成活率如下两个表格所示:果园,现在有两批幼苗可以选择,它们的成活率如下两个表格所示:类树苗:类树苗:B B类树苗:类树苗:*移植总数(m)成活数(m)成活的频率(m/n)10850472702354003697506621500133535003203700063351400012628移植总数(m)成活数(m)成活的频率(m/n)109504927
7、023040036075064115001275350029967000598514000119140.80.940.8700.9230.8830.8900.9150.9050.9020.90.980.850.90.8550.8500.8560.8550.851观察图表,回答问题串、从表中可以发现,类幼树移植成活的、从表中可以发现,类幼树移植成活的频率在频率在_左右摆动,并且随着统计数据左右摆动,并且随着统计数据的增加,这种规律愈加明显,估计类幼树的增加,这种规律愈加明显,估计类幼树移植成活的概率为移植成活的概率为_,估计类幼树移,估计类幼树移 植成活的概率为植成活的概率为_ 、张小明选择类树
8、苗,还是类树苗呢、张小明选择类树苗,还是类树苗呢?_,_,若他的荒山需要若他的荒山需要1000010000株树苗,则他株树苗,则他实际需要进树苗实际需要进树苗_株株.3 3、如果每株树苗、如果每株树苗9 9元,则小明买树苗共需元,则小明买树苗共需 _元元0.90.90.85A类类11112100008*例、某水果公司以2元/千克的成本新进了10000千克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行 了“柑橘损坏率“统计,并把获得的数据记录在下表中了问题:完好柑橘的实际成本为_元千克问题:在出售柑橘(已去掉损坏的柑橘)时,要使获得5000元利润,每千克大约定价为多少元比较合适?柑橘总
9、质量(n)千克损坏柑橘质量(m)千克柑橘损坏的频率(m/n)505.5010010.5015015.1520019.4225024.3530030.3235035.3240039.2445044.5750051.54*?0.1100.1050.1010.0970.0970.1010.1010.0980.0990.103解:由图表可估计柑橘损坏的概率为0.1(结果保留小数点后一位),则柑橘完好的概率是0.9在10000kg柑橘中完好柑橘的质量为:100000.9=90000.9=9000(kgkg)完好柑橘的实际成本为:完好柑橘的实际成本为:设:每千克柑橘的售价为设:每千克柑橘的售价为x元,由题
10、意得:元,由题意得:(x-2.22)9000=50009000=5000解得:x 2.8答:出售柑橘时,每千克定价大约答:出售柑橘时,每千克定价大约2.8元可获利润为元可获利润为5000元元。升华提高升华提高了解了一种方法了解了一种方法-用多次试验频率去估计概率用多次试验频率去估计概率体会了一种思想:体会了一种思想:用样本去估计总体用样本去估计总体用频率去估计概率用频率去估计概率弄清了一种关系弄清了一种关系-频率与概率的关系频率与概率的关系当当试验次数很多或试验时样本容量足够大试验次数很多或试验时样本容量足够大时时,一件事一件事件发生的件发生的频率频率与相应的与相应的概率概率会非常接近会非常接
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 用频率估计概率 283 频率 估计 概率 课件 me
限制150内