全等三角形及判定.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《全等三角形及判定.ppt》由会员分享,可在线阅读,更多相关《全等三角形及判定.ppt(136页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第十二章第十二章 全等三角形全等三角形人民教育出版社义务教育教科书八年级数学(上册)人民教育出版社义务教育教科书八年级数学(上册)下列各组图形的形状与大小有什么特点?思考思考:他们能完全重合吗他们能完全重合吗?每组的两个图形有什么特点?完全重合完全重合形状、大小相同的图形放在一形状、大小相同的图形放在一起能够完全重合。起能够完全重合。能够完全重合的两个图形叫做能够完全重合的两个图形叫做全等形全等形能够完全重合的两个三角形叫能够完全重合的两个三角形叫做做全等三角形全等三角形下列两三角形是怎样由一下列两三角形是怎样由一个三角形得到另一个三角个三角形得到另一个三角形?它们有什么特点?形?它们有什么
2、特点?BACNPMACBDE下列两三角形是怎样由一下列两三角形是怎样由一个三角形得到另一个三角个三角形得到另一个三角形?它们有什么特点?形?它们有什么特点?ABCDCBADE下列两三角形是怎样由一下列两三角形是怎样由一个三角形得到另一个三角个三角形得到另一个三角形?它们有什么特点?形?它们有什么特点?BDC 一个三角形经过平移、旋转、翻折一个三角形经过平移、旋转、翻折后所得到的三角形与原三角形全等。后所得到的三角形与原三角形全等。ABC EDF“全等”用符号“”表示图中的图中的ABC和和DEF全等,全等,记作记作:ABC DEF读作读作:ABC全等于全等于DEF 你能否直接从你能否直接从记作记
3、作ABC DEF中判断出所中判断出所有的对应顶点、对应边和有的对应顶点、对应边和对应角?对应角?SOTDCNMOAB两个全等三角形的位置变化了,对应边、两个全等三角形的位置变化了,对应边、对应角的大小有没有变化?由此你能得到对应角的大小有没有变化?由此你能得到什么结论?什么结论?寻找各图中两个全等三角形的对应元素。EADCBF全等三角形的对应边相等,全等三角形的对应边相等,全等三角形的对应角相等全等三角形的对应角相等.如图:如图:ABC DFE AB=DF,BC=FE,AC=DEABC DFE A=D,B=F,C=EDEFABCABCDEFACBDEFAB=DF,CB=EF,AC=DE.A=D
4、,CBA=F,C=DEF.先写出全等式,再指出先写出全等式,再指出它们的对应边和对应角它们的对应边和对应角ABCDABCABDAB=AB,BC=BD,AC=AD.BAC=BAD,ABC=ABD C=D.规律一:规律一:有公共边的,公共边是对应边有公共边的,公共边是对应边 先写出全等式,再指先写出全等式,再指出它们的对应边和对应角出它们的对应边和对应角ACDBAOCBODAO=BO,AC=BD,OC=OD.A=B,C=D,AOC=BOD.规律二:规律二:有对顶角的,对顶角是对应角有对顶角的,对顶角是对应角o 先写出全等式,再指出它们的先写出全等式,再指出它们的对应边和对应角对应边和对应角ABCD
5、EABCADEAB=AD,AC=AE,BC=DEA=A,B=D,ACB=AED.规律三:规律三:有公共角的,公共角是对应角有公共角的,公共角是对应角先写出全等式,再指出它先写出全等式,再指出它们的对应边和对应角们的对应边和对应角 先写出全等式,再指出先写出全等式,再指出它们的对应边和对应角它们的对应边和对应角ABCFDEAB=FD,AC=FE,BC=DEA=F,B=D,ACB=FED.规律五:规律五:一对最大的角是对应角一对最大的角是对应角 一对最小的角是对应角一对最小的角是对应角ABCFDE规律四:规律四:一对最长的边是对应边一对最长的边是对应边 一对最短的边是对应边一对最短的边是对应边3.
6、有公共角的,公共角一定是对应角。有公共角的,公共角一定是对应角。4.对应角所对的边是对应边,对应边对应角所对的边是对应边,对应边所对的角是对应角所对的角是对应角5.在两个全等三角形中最长边对最长边,在两个全等三角形中最长边对最长边,最短边对最短边,最大角对最大角,最最短边对最短边,最大角对最大角,最小角对最小角。小角对最小角。1.有公共边的,公共边一定是对应边。有公共边的,公共边一定是对应边。2.有对顶角的,对顶角一定是对应角。有对顶角的,对顶角一定是对应角。找出下列全等三角形的对应边、对应角ABCDABDCBD找出下列全等三角形的对应边、对应角ABCDOAODCOD找出下列全等三角形的对应边
7、、对应角ABDCEABCADE找出下列全等三角形的对应边、对应角ADECBFBFCDAE找出下列全等三角形的对应边、对应角ABMNCABNACMABMACN找出下列全等三角形的对应边、对应角ABCDAOBDOCABCDCBO如图,ABD EBCDABCE2、如果AB=3cm,BC=5cm,求BE、BD的长.BE=3cm,BD=5cm解:ABD EBCAB=EB,BC=BDAB=3cm,BC=5cm1、请找出对应边和对应角。AB 与与 EB、BC BD、AD EC,ABEC、DC、ABDEBC如图,EFGNMH2、如果EF=2.1cm,EH=1.1cm,HN=3.3cm,求NM、HG的长.HG=
8、EG-HG=3.3-1.1=2.2解:EFG NMHNM=EF=2.1,EG=HN=3.31、请找出对应边和对应角。NMFGEHABDACE,若,若ADB=100,B=30,说出,说出ACE中各角的大小?中各角的大小?ABCDE解解:ABDACE,AEC=ADB=1000,C=B=300,又又A+AEC+C=180A=1800-AEC-C =1800-1000-300=500如图如图,已知已知 AOC BOD求证:求证:ACBD互相重合的角叫做互相重合的边叫做 其中:互相重合的顶点叫做2.叫全等三角形。1.能够重合的两个图形叫做 。全等形全等形4.全等三角形的 和 相等对应边对应边对应角对应角
9、对应顶点对应顶点课课 堂堂 小小 结结 能够完全重合的两个三角形3.“全等”用符号“”来表示,读作“”对应边对应边对应角对应角5.书写全等式时要求把对应字母放在对应的位置上全等于全等于ABC 1.什么叫全等三角形?什么叫全等三角形?能够完全重合的两个三角形叫能够完全重合的两个三角形叫 全等三角形全等三角形。2.全等三角形有什么全等三角形有什么性质?性质?全等三角形的对应边相等,对应角相等全等三角形的对应边相等,对应角相等 .已知已知 ,试找出其中相等的边与角,试找出其中相等的边与角 ABC即:三条边对应相等,三个角对应相等的两个三角形全等。六个条件,可得到什么结论?六个条件,可得到什么结论?与
10、与 满足上述六个条件中的满足上述六个条件中的一部一部分分是否能保证是否能保证 与与 全等呢?全等呢?ABC一个条件可以吗?一个条件可以吗?两个条件可以吗?两个条件可以吗?一个条件可以吗?一个条件可以吗?1.有有一条边一条边相等的两个三角形相等的两个三角形不一定全等不一定全等探究活动探究活动2.有有一个角一个角相等的两个三角形相等的两个三角形不一定全等不一定全等结论:结论:有一个条件相等不能保证两个三角形全等有一个条件相等不能保证两个三角形全等.6cm300有两个条件对应相等不能保证三角形全等有两个条件对应相等不能保证三角形全等.60o300不一定全等不一定全等1.有有两个角两个角对应相等的两个
11、三角形对应相等的两个三角形两个条件可以吗?两个条件可以吗?3.有有一个角和一条边一个角和一条边对应相等的两个三角形对应相等的两个三角形2.有有两条边两条边对应相等的两个三角形对应相等的两个三角形4cm6cm不一定全等不一定全等30060o4cm6cm不一定全等30o 6cm结论:结论:探究活动探究活动三个条件呢?三个条件呢?探究活动探究活动 1.三个角;三个角;2.三条边;三条边;3.两边一角;两边一角;4.两角一边。两角一边。如如果果给给出出三三个个条条件件画画三三角角形形,你你能能说说出出有有哪哪几几种种可可能能的的情情况况?结论结论:三个内角对应相等的三角形三个内角对应相等的三角形 不一
12、定全等不一定全等。探究活动探究活动 1.有有三个角三个角对应相等的两个三角形对应相等的两个三角形60o30030060o9090oo9090oo三个条件呢?三个条件呢?若已知一个三角形的三条边,你能画出若已知一个三角形的三条边,你能画出这个三角形吗?这个三角形吗?画一个三角形,使它的三边长分画一个三角形,使它的三边长分别为别为4cm,5cm,7cm.三边对应相等的两个三角形会全等吗?三边对应相等的两个三角形会全等吗?画法:画法:1.画线段画线段AB=4cm;2.分别以分别以A、B为圆心,为圆心,5cm、7cm 长为半径作圆弧,交于点长为半径作圆弧,交于点C;3.连结连结AB、AC;ABC就是所
13、求的三角形就是所求的三角形.探究活动探究活动 三边相等的两个三角形会全等吗?三边相等的两个三角形会全等吗?画法:画法:探究活动探究活动 你能得出什你能得出什么结论?么结论?三边对应相等的两个三角形全等,简写三边对应相等的两个三角形全等,简写为为“边边边边边边”或或“SSS”。用上面的结论可以判定两个三角形全等用上面的结论可以判定两个三角形全等判断两个三角形全等的推理过程,叫做判断两个三角形全等的推理过程,叫做证明证明三角形全等三角形全等ABCABC三边对应相等的两个三角形全等三边对应相等的两个三角形全等.(简写成简写成“边边边边边边”或或“SSS”)如何用符号语言来表达呢如何用符号语言来表达呢
14、?结结论论 A=_ B=_ C=_ ABC ADC(SSS)例例1 已知:如图,已知:如图,AB=AD,BC=CD,求证求证:ABC ADCABCDACAC ()AB=AD ()BC=CD ()证明:证明:在在ABC和和ADC中中=已知已知已知已知 公共边公共边判断两个三角形全等的推理过程,叫做证明三角形全等。判断两个三角形全等的推理过程,叫做证明三角形全等。分析:分析:要证明要证明 ABC ADC,首先看这两个三角首先看这两个三角形的形的三条边三条边是否对应相等。是否对应相等。结论结论:从这题的证明中可以看出,证明是由已从这题的证明中可以看出,证明是由已知出发,经过一步步的推理,最后推出结论
15、正知出发,经过一步步的推理,最后推出结论正确的过程。确的过程。准备条件:准备条件:证全等时要用的间接条件要先证好;证全等时要用的间接条件要先证好;三角形全等书写三步骤:三角形全等书写三步骤:写出在哪两个三角形中写出在哪两个三角形中摆出三个条件用大括号括起来摆出三个条件用大括号括起来写出全等结论写出全等结论证明的书写步骤:证明的书写步骤:例例2 如图,如图,ABCABC是一个钢架,是一个钢架,AB=ACAB=AC,AD AD是连接点是连接点A A与与BCBC中点中点D D的支架的支架.求证:求证:ABDACD.ABDACD.ABCDABCD.CDBD BCD 的中点,是证明:QACDABD 中,
16、和在DDADADCDBDACAB (公共边)(已证)(已知).SSSACD ABD )(DD(1)(2)BAD=CAD.(2)BAD=CAD.(2)BAD=CAD.(2)BAD=CAD.(2)由()由(1)得)得ABDACD,BAD=BAD=CAD.CAD.(全等三角形对应角相等)(全等三角形对应角相等)(全等三角形对应角相等)(全等三角形对应角相等)工人师傅常用角尺平分一个任意角工人师傅常用角尺平分一个任意角.做法如下:如图,做法如下:如图,AOB是一个任意角,在边是一个任意角,在边OA,OB上分别取上分别取OM=ON,移动,移动角尺,使角尺两边相同的刻度分别与角尺,使角尺两边相同的刻度分别
17、与M,N重合重合.过角尺顶点过角尺顶点C的射线的射线OC便是便是AOB的平分线的平分线.为什么?为什么?课课 本本 P8OMABNC(全等三角形对应角相等)(全等三角形对应角相等)(全等三角形对应角相等)(全等三角形对应角相等)(已知)(已知)(已知)(已知)(已知)(已知)(已知)(已知)(公共边)(公共边)(公共边)(公共边)例例3、已知已知BACBAC(如图),(如图),用直尺和圆规用直尺和圆规作作BACBAC的平分线的平分线AD,并说出该作法正,并说出该作法正确的理由。确的理由。ACB 小明做了一个如图所小明做了一个如图所示的风筝,他想去验证示的风筝,他想去验证BACBAC与与DACD
18、AC是否相等,是否相等,但手头却只有一把足够但手头却只有一把足够长的尺子。你能帮助他长的尺子。你能帮助他想个方法吗?说明你这想个方法吗?说明你这样做的理由。样做的理由。A AB BD DC C思思考考 如图,如图,AB=AC,AE=AD,BD=CE,求证:求证:AEB ADC。证明:证明:BD=CE BD-ED=CE-ED,即即BE=CD CABDE在在AEB和和ADC中,中,AB=AC(已知)(已知)AE=AD(已知)(已知)BE=CD(已证)(已证)AEB ADC (sss)CBDAFEDB思思考考 已知已知AC=FE,BC=DE,点,点A、D、B、F在一条直线上,在一条直线上,AD=FB
19、.要用要用“边边边边边边”证明证明ABC FDE,除了已知中的,除了已知中的AC=FE,BC=DE以以外,还应该有什么条件?怎样才能得到这个条件?外,还应该有什么条件?怎样才能得到这个条件?解:解:要证明要证明ABC FDE,还应该有还应该有AB=DF这个条件这个条件AD=FB AD+DB=FB+DB 即即 AB=FD思思考考FDBABC 中,中,和和在在D DD DFBACDBBCFDAB (已知),(已知),(已知),(已知),(已证),(已证),.SSSFDB ABC )(D DD DCBDAFEDB 已知已知AC=FE,BC=DE,点,点A、D、B、F在一条直线上,在一条直线上,AD=
20、FB.要用要用“边边边边边边”证明证明ABC FDE,除了已知中的,除了已知中的AC=FE,BC=DE以以外,还应该有什么条件?怎样才能得到这个条件?外,还应该有什么条件?怎样才能得到这个条件?练习练习1:如图,如图,ABAC,BDCD,BHCH,图中,图中有几组全等的三角形?它们全等的条件是什么?有几组全等的三角形?它们全等的条件是什么?HDCBA解:有三组。解:有三组。在在ABH和和ACH中中,AB=AC,BH=CH,AH=AH,ABHACH(SSS););在在ABD和和ACD中中,AB=AC,BD=CD,AD=AD,ABDACD(SSS););在在DBH和和DCH中中BD=CD,BH=C
21、H,DH=DH,DBHDCH(SSS).(2 2 2 2)如图,)如图,)如图,)如图,D D D D、F F F F是线段是线段是线段是线段BCBCBCBC上的两点,上的两点,上的两点,上的两点,AB=CEAB=CEAB=CEAB=CE,AF=DEAF=DEAF=DEAF=DE,要使,要使,要使,要使ABFECD ABFECD ABFECD ABFECD,还需要条件还需要条件还需要条件还需要条件 .BCBCBCBCDCBDCBBF=DC 或或 BD=FCA ABCD练习练习2解:解:ABCDCB理由如下:理由如下:AB=DCAC=DB=ABCABC ()SSSSSS(1 1 1 1)如图,)
22、如图,)如图,)如图,AB=CDAB=CDAB=CDAB=CD,AC=BDAC=BDAC=BDAC=BD,ABCABCABCABC和和和和DCBDCBDCBDCB是否全等是否全等是否全等是否全等?试说明理由。?试说明理由。?试说明理由。?试说明理由。AE B D F CB D F CB D F CB D F C 练习练习3、如图,在四边形如图,在四边形ABCD中中,AB=CD,AD=CB,求证:求证:A=C.DABC证明:证明:在在ABD和和CDB中中AB=CDAD=CBBD=DBABDCDB(SSS)(已知)(已知)(已知)(已知)(公共边)(公共边)A=C(全等三角形的对应角相等全等三角形
23、的对应角相等)你能说明你能说明ABCD,ADBC吗?吗?解:解:E、F分别是分别是AB,CD的中点(的中点()又又AB=CDAE=CF在在ADE与与CBF中中 DE=ADECBF ()AE=AB CF=CD()1212补充练习:补充练习:如图,已知如图,已知AB=CD,AD=CB,E、F分别是分别是AB,CD的中点,且的中点,且DE=BF,说出下列判断成立的理由,说出下列判断成立的理由.ADECBFA=C线段中点的定义线段中点的定义BFAD AECFSSSADECBF全等三角形全等三角形对应角相等对应角相等已知已知ADBCFECB A=C ()=ABCDFE例例.如图如图,已知已知AB=DE,
24、AC=DF,AB=DE,AC=DF,要说明要说明ABCDEFABCDEF,还需增加一个什么条件?还需增加一个什么条件?请同学们谈谈本节课的收获与体会请同学们谈谈本节课的收获与体会本节课你学到了什么?本节课你学到了什么?发现了什么?发现了什么?有什么收获?有什么收获?还存在什么没有解决的问题?还存在什么没有解决的问题?小小 结结2.三边对应相等的两个三角形全等三边对应相等的两个三角形全等(简写成(简写成“边边边边边边”或或“SSS”););1.知道三角形三条边的长度怎样画三角形;知道三角形三条边的长度怎样画三角形;3.初步学会理解证明的思路,初步学会理解证明的思路,应用应用“边边边边边边”证明两
25、个三角形全等证明两个三角形全等.作业:作业:1、练习题(练习题(选做选做)2、笔记补充完整、笔记补充完整Over!我们学过哪几种判定三角形全等的方法?1、全等三角形概念:三条边对应相、全等三角形概念:三条边对应相等,三个角对应相等。等,三个角对应相等。2、全等三角形判定条件(一)三边对应相等的两个三角形全等。简称“边边边”或“SSS”问问题题:如如图图有有一一池池塘塘。要要测测池池塘塘两两端端A、B的的距距离离,可可无无法法直直接接达达到到,因因此此这这两两点点的的距距离离无无法法直直接接量量出出。你你能能想想出办法来吗?出办法来吗?ABABCED在平地上取一个可直接到达在平地上取一个可直接到
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 判定
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内