线性二次型最优控制.pptx





《线性二次型最优控制.pptx》由会员分享,可在线阅读,更多相关《线性二次型最优控制.pptx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、6.1 线性二次型问题线性二次性问题的提法:设线性时变系统的状态方程为 假设控制向量 不受约束,用 表示期望输出,则误差向量为正定二次型 半正定二次型实对称阵A为正定(半正定)的充要条件是全部特征值0(=0)。加权矩阵总可化为对称形式。求最优控制 ,使下列二次型性能指标最小。第1页/共27页性能指标的物理含义:加权矩阵的意义:(1)F,Q,R是衡量误差分量和控制分量的加权矩阵,可根据各分量的重要性灵活选取。(2)采用时变矩阵Q(t),R(t)更能适应各种特殊情况。例如:Q(t)可开始取值小,而后取值大第2页/共27页线性二次型问题的本质:用不大的控制,来保持较小的误差,以达到能量和误差综合最优
2、的目的。线性二次型问题的三种重要情形:第3页/共27页6.2 状态调节器问题 设线性时变系统的状态方程为 假设控制向量 不受约束,求最优控制 ,使系统的二次型性能指标取极小值。6.2.1 有限时间状态调节器问题物理意义:以较小的控制能量为代价,使状态保持在零值附近。第4页/共27页解:1.应用最小值原理求解u(t)关系式因控制不受约束,故沿最优轨线有:(R(t)正定,保证其逆阵的存在。)规范方程组:写成矩阵形式:其解为:下面思路:确定 与 的关系,带入(5-6)形成状态反馈第5页/共27页横截条件给出了终端时刻二者的关系:即为了与(5-10)建立联系,将(5-9)写成向终端转移形式:(5-13
3、)-(5-12)*F 可得第6页/共27页可实现最优线性反馈控制下面思路:求解P(t),但直接利用(5-16)求解,涉及矩阵求逆,运算量大第7页/共27页(5-17)对时间求导2.应用其性质求解p(t)(5-20)与(5-19)相等,可得黎卡提方程(Riccati)边界条件:第8页/共27页还可进一步证明,最优性能指标为:黎卡提方程求解问题:(1)可以证明,P(t)为对称矩阵,只需求解n(n+1)/2个一阶微分方程组。(2)为非线性微分方程,大多数情况下只能通过计算机求出数值解。第9页/共27页(1)根据系统要求和工程实际经验,选取加权矩阵F,Q,R3.状态调节器的设计步骤(2)求解黎卡提微分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性 二次 最优 控制

限制150内