运筹学-第一章-单纯形法进一步讨论ppt课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《运筹学-第一章-单纯形法进一步讨论ppt课件.ppt》由会员分享,可在线阅读,更多相关《运筹学-第一章-单纯形法进一步讨论ppt课件.ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确运运 筹筹 帷帷 幄幄 之之 中中决决 胜胜 千千 里里 之之 外外单纯形法进一步讨论单纯形法进一步讨论窦志武窦志武云南财经大学云南财经大学 物流学院物流学院在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确单纯形法的进一步讨论人工变量法单纯形法的进一步讨论人工变量法人工变量法:人工变量法:前面讨论了在标准型中系数矩阵有单位矩阵,很容易前面讨论了在标准型中系数矩阵有单位矩阵,很容易确定一组基可行解。在实际问题中有些模型并不含有单位
2、确定一组基可行解。在实际问题中有些模型并不含有单位矩阵,为了得到一组基向量和初基可行解,在约束条件的矩阵,为了得到一组基向量和初基可行解,在约束条件的等式左端加一组虚拟变量,得到一组基变量。这种人为加等式左端加一组虚拟变量,得到一组基变量。这种人为加的变量称为的变量称为人工变量人工变量,构成的可行基称为,构成的可行基称为人工基人工基,用,用大大MM法法或或两阶段法两阶段法求解,这种用人工变量作桥梁的求解方法称求解,这种用人工变量作桥梁的求解方法称为为人工变量法人工变量法。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 例:min z
3、=2x1+3x2 max z=-2x1-3x2+0 x3 s.t x1+x2 3 标准化 s s.t t x1+x2-x3=3 x1+2x2=4 x1+2x2=4 x10,x20 xj0,(j=1,2,3,4)max z=-2x1-3x2+0 x3-M x4-M x5 s s.t t x1+x2-x3+x4=3 x1+2x2 +x5=4 xj0,(j=1,2,3,4,5)引进人工变量,及引进人工变量,及M非常大正系数,模型转变为非常大正系数,模型转变为这种处理方法称为大这种处理方法称为大M法,以下则可完全按单纯形法法,以下则可完全按单纯形法求解。求解。1大大M法法单纯形法的进一步讨论人工变量法
4、单纯形法的进一步讨论人工变量法在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确单纯形法的进一步讨论人工变量法单纯形法的进一步讨论人工变量法例例1.10 用大用大M法解下列线性规划法解下列线性规划解:首先将数学模型化为标准形式解:首先将数学模型化为标准形式系数矩阵中不存在系数矩阵中不存在单位矩阵,无法建单位矩阵,无法建立初始单纯形表。立初始单纯形表。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确单纯形法的进一步讨论人工变量法单纯形法的进一步讨论人工变量法故人为添加两个单位向量
5、,得到人工变量单纯形法数学模型:故人为添加两个单位向量,得到人工变量单纯形法数学模型:其其中中:M是是一一个个很很大大的的抽抽象象的的数数,不不需需要要给给出出具具体体的的数数值值,可可以以理理解解为为它它能能大大于于给给定定的的任任何何一一个个确确定定数数值值;再再用用前前面面介介绍的单纯形法求解该模型,计算结果见下表。绍的单纯形法求解该模型,计算结果见下表。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确单纯形法的进一步讨论人工变量法单纯形法的进一步讨论人工变量法cj32-100-M-MCBXBbx1x2x3x4x5x6x7i-M
6、x64-431-101040 x5101-1201005-Mx712-21000113-2M2+M-1+2M-M-Mx63-650-1013/50 x58-3300108/3-1x312-210005-6M5M0-M002x23/56/5101/500 x531/53/5003/5131/3-1x311/52/5012/505 00002x213010123x131/310015/3-1x319/300102/3000-5-25/3在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确单纯形法的进一步讨论人工变量法单纯形法的进一步讨论人工变
7、量法例例1.11 用大用大M法解下列线性规划法解下列线性规划解:首先将数学模型化为标准形式解:首先将数学模型化为标准形式系数矩阵中不存在系数矩阵中不存在单位矩阵,无法建单位矩阵,无法建立初始单纯形表。立初始单纯形表。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确单纯形法的进一步讨论人工变量法单纯形法的进一步讨论人工变量法故人为添加两个单位向量,得到人工变量单纯形法数学模型:故人为添加两个单位向量,得到人工变量单纯形法数学模型:其其中中:M是是一一个个很很大大的的抽抽象象的的数数,不不需需要要给给出出具具体体的的数数值值,可可以以理理
8、解解为为它它能能大大于于给给定定的的任任何何一一个个确确定定数数值值;再再用用前前面面介介绍的单纯形法求解该模型,计算结果见下表。绍的单纯形法求解该模型,计算结果见下表。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确单纯形法的进一步讨论人工变量法单纯形法的进一步讨论人工变量法Cj3-1-100-M-MCBXBbx1x2x3x4x5x6x70 x4111-21100011-Mx63-4120-1103/2-Mx71-201000113-6M-1+M-1+3M0-M000 x4103-20100-1-Mx610100-11-21-1x3
9、1-20100011-1+M00-M0-3M+1在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确单纯形法的进一步讨论人工变量法单纯形法的进一步讨论人工变量法Cj3-1-100-M-MCBXBbx1x2x3x4x5x6x70 x4123001-22-54-1x210100-11-2-1x31-2010001Z-21000-1-M+1-M-13x141001/3-2/32/3-5/3-1x210100-11-2-1x390012/3-4/34/3-7/3Z2000-1/3-1/3-M+1/3-M+2/3在整堂课的教学中,刘教师总是让学生带
10、着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确单纯形法的进一步讨论两阶段法单纯形法的进一步讨论两阶段法 用计算机处理数据时,只能用很大的数代替用计算机处理数据时,只能用很大的数代替M,可能造可能造成计算机上的错误,故多采用成计算机上的错误,故多采用两阶段法两阶段法。第一阶段:第一阶段:在原线性规划问题中加入人工变量,构造如下模型:在原线性规划问题中加入人工变量,构造如下模型:对上述模型求解(单纯形法),若对上述模型求解(单纯形法),若=0,说明问题存在基说明问题存在基可行解,可以进行第二个阶段;否则,原问题无可行解,停可行解,可以进行第二个阶段;否则,原问题无可行解,
11、停止运算。止运算。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确单纯形法的进一步讨论两阶段法单纯形法的进一步讨论两阶段法第一阶段的线性规划问题可写为:第一阶段的线性规划问题可写为:第一阶段单纯形法迭代的过程见下表第一阶段单纯形法迭代的过程见下表在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确单纯形法的进一步讨论两阶段法单纯形法的进一步讨论两阶段法Cj00000-1-1CBXBbx1x2x3x4x5x6x70 x4111-21100011-1x63-4120-1103/2-1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运筹学 第一章 单纯 进一步 讨论 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内