《高考试卷》2023福建高考数学(理)试题.doc
《《高考试卷》2023福建高考数学(理)试题.doc》由会员分享,可在线阅读,更多相关《《高考试卷》2023福建高考数学(理)试题.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2010年高考福建数学试题(理科解析)第I卷(选择题 共60分)一、选择题:本大题共12小题。每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1的值等于( )A. B. C. D. 【答案】A【解析】原式=,故选A。【命题意图】本题考查三角函数中两角差的正弦公式以及特殊角的三角函数,考查基础知识,属保分题。2以抛物线的焦点为圆心,且过坐标原点的圆的方程为( )A. B. C. D. 【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为,故所求圆的方程为,即,选D。【命题意图】本题考查抛物线的几何性质以及圆的方程的求法,属基
2、础题。3设等差数列的前n项和为,若,则当取最小值时,n等于A.6 B.7 C.8 D.9【答案】A【解析】设该数列的公差为,则,解得,所以,所以当时,取最小值。【命题意图】本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算能力。4函数的零点个数为 ( )A.0 B.1 C.2 D.3【答案】C【解析】当时,令解得;当时,令解得,所以已知函数有两个零点,选C。【命题意图】本题考查分段函数零点的求法,考查了分类讨论的数学思想。5阅读右图所示的程序框图,运行相应的程序,输出的值等于( )A.2 B.3 C.4 D.5【答案】C【解析】由程序框图可知,该框图的功能是输出使和
3、时的的值加1,因为, 所以当时,计算到,故输出的是4,选C。【命题意图】本题属新课标新增内容,考查认识程序框图的基本能力。6如图,若是长方体被平面截去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且,则下列结论中不正确的是( )A. B.四边形是矩形 C. 是棱柱 D. 是棱台【答案】D【解析】因为,所以,又平面,所以平面,又平面,平面平面=,所以,故,所以选项A、C正确;因为平面,所以平面,又平面, 故,所以选项B也正确,故选D。【命题意图】本题考查空间中直线与平面平行、垂直的判定与性质,考查同学们的空间想象能力和逻辑推理能力。7若点O和点分别是双曲线的中心和左焦点,点P
4、为双曲线右支上的任意一点,则的取值范围为 ( )A. B. C. D. 【答案】B【解析】因为是已知双曲线的左焦点,所以,即,所以双曲线方程为,设点P,则有,解得,因为,所以=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值,故的取值范围是,选B。【命题意图】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力。8设不等式组所表示的平面区域是,平面区域是与关于直线对称,对于中的任意一点A与中的任意一点B, 的最小值等于( )A. B.4 C. D.2【答案】B【解析】由题意知,所
5、求的的最小值,即为区域中的点到直线的距离的最小值的两倍,画出已知不等式表示的平面区域,如图所示,可看出点(1,1)到直线的距离最小,故的最小值为,所以选B。【命题意图】本题考查不等式中的线性规划以及两个图形间最小距离的求解、基本公式(点到直线的距离公式等)的应用,考查了转化与化归能力。9对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A.1 B.-1 C.0 D.【答案】B【解析】由题意,可取,所以,选B。【命题意图】本题属创新题,考查复数与集合的基础知识。10对于具有相同定义域D的函数和,若存在函数为常数),对任给的正数m,存在相应的,使得当且时,总有,则称直线为曲线和的“分渐
6、近线”.给出定义域均为D=的四组函数如下:, ; ,;,; ,.其中, 曲线和存在“分渐近线”的是( )A. B. C.D.【答案】C【解析】经分析容易得出正确,故选C。【命题意图】本题属新题型,考查函数的相关知识。二、填空题:11在等比数列中,若公比,且前3项之和等于21,则该数列的通项公式 .【答案】【解析】由题意知,解得,所以通项。【命题意图】本题考查等比数列的通项公式与前n项和公式的应用,属基础题。12若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于 .【答案】【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,所以其表面积为。【命题意图】
7、本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力。13某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。【答案】0.128【解析】由题意知,所求概率为。【命题意图】本题考查独立重复试验的概率,考查基础知识的同时,进一步考查同学们的分析问题、解决问题的能力。14已知函数和的图象的对称轴完全相同。若,则的取值范围是 。【答案】【解析】由题意知,因为,所以,由三角函数图象知:的最小值为,最大值为,所以的取
8、值范围是。【命题意图】本题考查三角函数的图象与性质,考查了数形结合的数学思想。15已知定义域为的函数满足:对任意,恒有成立;当时,。给出如下结论:对任意,有;函数的值域为;存在,使得;“函数在区间上单调递减”的充要条件是 “存在,使得”。其中所有正确结论的序号是 。【答案】【解析】对,因为,所以,故正确;经分析,容易得出也正确。【命题意图】本题考查函数的性质与充要条件,熟练基础知识是解答好本题的关键。三、解答题:16(本小题满分13分)设是不等式的解集,整数。(1)记使得“成立的有序数组”为事件A,试列举A包含的基本事件;(2)设,求的分布列及其数学期望。【命题意图】本小题主要考查概率与统计、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考试卷 高考 试卷 2023 福建 数学 试题
限制150内