《案例分析勾股定理.doc》由会员分享,可在线阅读,更多相关《案例分析勾股定理.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、探索勾股定理教学案例分析设计教师:洛万乡民族中学 郑传刚一、设计意图:在教学中,设法使学生在承受数学知识的过程中,融入主动的探究、发现等活动,让学生有时机通过自己的归纳概括获取知识,让学生感受到数学来自生活,数学就在身边,数学就在自已的手中。二、学情分析:我校八年级共两个班,都来自洛万乡各个村寨。通过观察发现只有一半左右的学生学习目标明确、学习积极性高、能主动的学习。有50%的同学有上进心,但主动性不够,需要教师的引导;但也有极少局部的学生的目标不明确,一天贪玩好耍,不能积极主动的完成学习,甚至不能完成教师布置的作业:对几何知识学生都存在着恐惧,不够自信,树立信心是让他们学好数学的最好方法。三
2、、教材分析:这节课是九年制义务教育初级中学教材浙教版八年级第十八章第一节勾股定理第一课时,勾股定理是几何中几个重要定理之一,它提醒的是直角三角形中三边的数量关系。它在数学的开展中起到重要的作用,在现实世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的根底上对直角三角形有进一步的认识与理解。四、三维目标:知识与技能1、 了解勾股定理的文化背景,体验欧冠地理的探索过程。2、 了解理由拼图验证勾股定理的方法。3、 利用勾股定理,直角三角形的两条边求第三条变的长。过程与方法1、 在勾股定理的探索过程中,开展合情推理能力,体会数形结婚的思想。2、 经历观察与发现直角三角形三边关系的过程,感受
3、勾股定理的应用意识。情感态度与价值观1、通过对勾股定理历史的了解,感受数学文化,激发学习热情。2、在探索活动中,体会解决问题方法的多样性,培养学生的合作交流意识与探索精神。五、教学重点: 勾股定理的证明与应用。 六、教学难点: 拼图、用计算面积的方法证明勾股定理。七、教学手段:情景创设法、案例教学法八、教学准备:1、教师准备:教学课件、三角尺一副、10套自制的不同边长的正方形模型等2、学生准备:三角尺九、教学方法: 1、教师教法: 引导发现、尝试指导、实验探究相结合。 2、学生学法: 积极参与、动手动脑与主动发现相结合。师生互动活动设计: 十、教学过程: 1、创设情景,引入新课 师:结合动画讲
4、故事西周开国时期,周公非常爱才,他与喜欢钻研数学的商高是好朋友。有一天,商高对周公说,最近我又有一个新的发现,把一根长为7的直尺折成直角,使一边长勾为3,另一边长股为4,连接两端弦得一个直角三角形,周公您猜一猜第三边的长等于多少周公摇头不知道。 同学们,你们猜猜是多少? 生:5! 生:不知道! 师:不知道也没关系,我们来量一量斜边的长就知道了。动画演示 师:后来又发现,直角边为6、8的直角三角形的斜边的长是10。这两组数据是否具有某种共同点呢?带着这个问题人们对直角三角形做了进一步的研究,通过计算三条边长的平方发现,直角三角形中的三条边长之间还真有一种特殊的关系。同学们也来算一算、猜一猜看,它
5、们之间到底有什么样的关系呢? 生:32+42=52、62+82=102 师:这是两组特殊数字,但由此引发一个有待我们深入思考的问题,看哪位同学有新问题要提? 生:一个任意的直角三角形的三边是否也有这种相等关系呢? 师:这个问题提得好!我们用几何画板再做一个直角三角形来多实验几次,请注意观察。任意改变三边的长,度量、计算显示相等关系依然不变。 师:通过实验,可以得到什么结论?或问同学们发现直角三角形的三边有什么样的关系?请同桌商量讨论后把你们的结论用文字语言或数学式子表达出来。 生:直角三角形的三边满足:两直角边的平方与等于斜边的平方。 即 a2+b2=c2 师:同学们概括得非常好!这个结论尽管
6、是通过屡次实验得到的,但要说明它对任意的直角三角形都成立,还有待进展证明。首先我们要明确,在什么图形中要证明什么结论? 生:在直角三角形中证明a2+b2=c2师:怎样证明呢?学生茫然这个问题是有点难度,让我们先来观察这个要证明的等式,看等式中的a、b、c表示什么? 生:表示直角三角形的三条边长。 师:a2、b2、c2是边长的平方,由边长的平方可联想到什么图形? 生:正方形。正方形的面积。 师:对整个等式你们怎样理解? 生:等式可以理解为两个正方形的面积与等于一个正方形的面积。 师:那好,下面我们就来做一个拼正方形的游戏,看能不能对我们证明结论有些帮助。 这一环节利用故事情节引入,是为了引起学生
7、的注意,激发学生的学习兴趣,调动学生满腔热情地投入学习过程。在问题情景中引导学生提问,是为了培养学生问问题的意识,让学生主动地带着问题在实验的过程中去感受数学的再发现。 2、动手拼图,合作探索定理证明方法 师:现在,前后4人为一个小组,教师给每小组提供了拼图模型两套,要求每一套模型拼成一个没有空隙且不重叠的正方形。拼好后请上台展示你们的成果,比一比,看哪一组完成任务最快。 这里充分利用了初中学生的好奇心与好胜心,给静态知识注入了活力,同时在课堂上增添了观察、探究等可形成能力的新因素。这样不仅可以调动学生的已有经历,沟通相关知识,而且还能培养学生观察、动手实践的能力。另外,在整个拼图过程中,学生
8、自始至终处于主体位置上,教师只是他们的学习合作伙伴,在巡视的同时,给个别小组以适当指导。这样的设计表达了数学活动的教育思想,有利于学生在建构的环境中,真正主动的建构自己的理解。 待各组同学根本完成后,挑选出一组拼图与同学们共同分析:师:同学们比照自己拼成的两个图形,看看它们有什么共同点与不同点? 生:都是边长相等的正方形,但拼图的模型不同。 生:这两个正方形的面积相等。 师:这两个正方形的面积怎样计算呢?通过你的计算能否证明a2+b2=c2?请试一试。 师:看哪两位同学愿意上来写出证明过程。 生甲:证明 : 两个正方形的面积相等, 4(ab2)+a2+b2=4(ab2)+c2a2+b2=c2
9、生乙:证明 : (a+b)2=4(ab2)+c2 a2+2ab+ b2=2ab+ c2 a2+ b2= c2 证明逐步深入,是为了启发学生把形的问题转化为数的问题,联想到用计算面积的方法证明a2+ b2= c2,从而突破教学难点。 师:两位同学刚刚用两种不同的方法证明了实验得出的结论,这就是我们今天要学习的勾股定理。请两位同学再谈谈你们的证明思路好吗? 生甲:图A的面积用四个全等的直角三角形的面积加两个正方形的面积,图B的面积用四个全等的直角三角形的面积加一个正方形的面积,利用面积相等就证得结论。 生乙:我把图B用两种不同方法计算它的面积也能证得结论。 师:说得非常好!甲同学的证明思路正好符合
10、我们前面对等式的理解;乙同学的证明思路启发我们还可以通过拼各种不同的图形来证明勾股定理。美国第十二任总统伽菲尔德有一天外出散步,遇到两个伏在石板上冥思苦想的男孩,总统上前问他们遇到了什么麻烦?一男孩说:“先生,您知道怎样证明勾股定理吗?总统一时语塞,无法解释,于是匆忙回家研究,得出了拼直角梯形证明勾股定理的方法。多媒体展示拼图按这个拼图也能证明勾股定理吗?请试试看。 生:根据拼图,用两种方法计算梯形的面积就能证明勾股定理。 师:对!这种思路很好。证明勾股定理的方法很多,有兴趣的同学课后可以上网查询相关资料,也可以尝试拼出不同的图形对勾股定理给予证明。 多媒体展示拼图。启发学生一题多证,多题归一
11、是为了培养学生思维的灵活性与创新性。下面我们来看看勾股定理能帮助我们解决什么问题? 3、课堂练习 1在Rt中,C=90,BC=a ,AC=b,AB=c(a) a=1,b =2, 那么c= (b) a=15,c=17,那么b= (c) c=25,b=15,那么a = 2一个底边长为6,腰长为5的等腰三角形, 求底边上的高与面积。 3李明上学经过的路旁有一小湖,隔湖相对有两棵树A、B, 但无法直接测量出A、B之间的距离。请你帮他设计一个解决问题的方案好吗?这是一道与生活实际贴近的开放题,鼓励学生用所学知识解决实际问题,培养学生应用数学的意识。 4、小结 师:通过以上练习,同学们可以感受到勾股定理有什么作用? 生:用勾股定理可以解决在直角三角形中两条边求第三边的问题。 师:说得非常好!在这一节课中,你们还学会了什么? 生:通过拼图学会了用计算面积的方法证明勾股定理。 师:同学们总结得非常好!勾股定理的应用非常广泛,它是联系数学中数与形的第一个定理,是数形结合思想的最初表达,自从我国古代数学家发现勾股定理后,它对数学产生了巨大的作用与影响,我们不仅要为之自豪,更要切实学好它。十一、板书设计:1、 创设情景,引入新课 3、课堂练习 2、探究新知 4、小结【教学反思】第 6 页
限制150内