矩阵在生活中的应用.doc
《矩阵在生活中的应用.doc》由会员分享,可在线阅读,更多相关《矩阵在生活中的应用.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 矩阵在实际生活中的应用一【摘要】随着科学技术的发展,数学的应用越来越广泛,可以说和我们的生活息息相关。而高等数学中的线性代数,也同样有着广泛的应用。本篇论文中,我们就对线性代数中的矩阵在生产成本、人口流动、加密解密、计算机图形变换等方面的应用进行研究。【关键词】高等数学 矩阵 实际 应用二 应用举例1.生产成本计算:在社会生产管理中经常要对生产过程中产生的很多数据进行统计、处理、分析,以此来对生产过程进行了解和监控,进而对生产进行管理和调控,保证正常平稳的生产以达到最好的经济收益。但是得到的原始数据往往纷繁复杂,这就需要用一些方法对数据进行处理,生成直接明了的结果。在计算中引入矩阵可以对数据
2、进行大量的处理,这种方法比较简单快捷。例1.某工厂生产三种产品A、B、C。每种产品的原料费、支付员工工资、管理费和其他费用等见表1,每季度生产每种产品的数量见表2。财务人员需要用表格形势直观地向部门经理展示以下数据:每一季度中每一类成本的数量、每一季度三类成本的总数量、四个季度每类成本的总数量。表1.生产单位产品的成本(元)表2.每种产品各季度产量(件)成本 产品ABC原料费用102015支付工资304020管理及其他费用101510产品季度春季夏季秋季冬季A22000B28000C25000解 我们用矩阵的方法考虑这个问题。两张表格的数据都可以表示成一个矩阵。如下所示: 通过矩阵的乘法运算得
3、到MN的第一行元素表示了四个季度中每个季度的原料总成本;MN的第二行元素表示了四个季度中每个季度的支付工资总成本; MN的第三行元素表示了四个季度中每个季度的管理及其他总成本。MN的第一列表示了春季生产三种产品的总成本;MN的第二列表示了夏季生产三种产品的总成本;MN的第三列表示了秋季生产三种产品的总成本;MN的第四列表示了冬季生产三种产品的总成本。对总成本进行汇总,每一类成本的年度总成本由矩阵的每一行元素相加得到,每一季度的总成本可由每一列相加得到。如下表:表3. 总成本汇总表季度春季夏季秋季冬季全年原料费10561000支付工资2223000220000管理费及其他872500合计4225
4、500415000这样,我们就利用矩阵的乘法把多个数据表汇总成一个数据表。从而比较直观地反映了该工厂生产的成本。2. 人口流动问题例2.假设某个中小城市及郊区乡镇共有40万人从事农、工、商工作,假定这个总人数在若干年内保持不变,而社会调查表明:(1) 在这40万就业人员中,目前约有25万人从事农业,10万人从事工业,5万人经商;(2) 在务农人员中,每年约有10%改为务工,10%改为经商;(3) 在务工人员中,每年约有10%改为务农,20%改为经商;(4) 在经商人员中,每年约有10%改为务农,20%改为务工。现欲预测一、二年后从事各业人员的人数,以及经过多年之后,从事各业人员总数之发展趋势。
5、解 若用三维向量(xi,yi,zi)T表示第i年后从事这三种职业的人员总数,则已知(x0,y0,z0)T=(25,10,5)T。而欲求(x1,y1,z1)T,(x2,y2,z2)T 并考察在n时(xn,yn,zn)T的发展趋势。 依题意,一年后,从事农、工、商的人员总数应为 即: 以(x0,y0,z0)T=(25,10,5)T代入上式,即得:即一年业人员的人数分别为21.5万10.5万、8万人。以及 即两年后从事各业人员的人数分别为19.05万、11.1万、9.85万人。进而推得: 即n年之后从事各业人员的人数完全由 决定。在这个问题的求解过程中,我们应用到矩阵的乘法、转置等,将一个实际问题数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩阵 在生活中 应用
限制150内