三两向量混和积.ppt
《三两向量混和积.ppt》由会员分享,可在线阅读,更多相关《三两向量混和积.ppt(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三两向量混和积 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望则有设向量=(ax,ay,az),=(cx,cy,cz),=(bx,by,bz),2.混合积的坐标表示式混合积的坐标表示式ijk,cxcycz,ijk 混合积性质:混合积性质:(1)=事实上,若,在同一个平面上,则 垂直于它们所在的平面,故 垂直于 ,即()=0(2),共面 =0 混合积()的绝对值等于以 ,为棱的平行六面体的体积 V 的数值。h平行六面体所以,=|()|3、混合积、混合积()的几何意义
2、的几何意义hV=S h=底面积高 h 为 在 上的投影的绝对值a b=|a|Prjab例例5:已知空间内不在一个平面上的四点 A(x 1,y 1,z 1),B(x 2,y 2,z 2),C(x 3,y 3,z 3),D(x 4,y 4,z 4)求四面体 ABCD 的体积。解:解:四面体 ABCD 的体积等于以 AB,AC 和 AD 为棱的平行六面体体积的六分之一,AB=(x2 x1,y2 y1,z2 z1),AC=(x3 x1,y3 y1,z3 z1),AD=(x4 x1,y4 y1,z4 z1),即即所以,V=其中行列式前的符号必须与行列式的符号一致。33平面及其方程平面及其方程(一一)平面
3、的点法式方程平面的点法式方程1.法向量:若一非零向量n垂直于一平面.则称向量n为平面 的法向量.注:1 对平面,法向量n不唯一;2 平面 的法向量n与 上任一向量垂直.一、平面方程一、平面方程2.平面的点法式方程平面的点法式方程设平面 过定点 M0(x0,y0,z0),且有法向量n=(A,B,C).对于平面上任一点M(x,y,z),向量M0M与n垂直.yxzM0MnOn M0 M=0而M0 M=(x x0,y y0,z z0),得:A(x x0)+B(y y0)+C(z z0)=0称方程(1)为平面的点法式方程.(1)例例1:求过点(2,3,0)且以 n=(1,2,3)为法向量的平面的方程.解
4、解:根据平面的点法式方程(1),可得平面方程为:1 (x 2)2 (y+3)+3 (z 0)=0即即:x 2y+3z 8=0 nM3M2M1解解:先找出该平面的法向量n.由于n与向量M1M2,M1M3都垂直.而M1M2=(3,4,6)M1M3=(2,3,1)可取n=M1M2 M1M3=14i+9j k例例2:求过三点M1(2,1,4),M2(1,3,2)和M3(0,2,3)的平面的方程.所以,所求平面的方程为:14(x 2)+9(y+1)(z 4)=0即:14x+9y z 15=0 M1M3M1M2,共面M1M,即(二二)平面的三点式方程平面的三点式方程设平面 过 不共线的三点M2(x 2,y
5、 2,z 2),M3(x 3,y 3,z 3),M1(x 1,y 1,z 1),对于平面上任一点 M(x,y,z),平面的三点式方程.(2)设平面与x,y,z 轴的交点依次为P(a,0,0),Q(0,b,0),R(0,0,c)三点oyPxzQR(三三)平面的截距式方程平面的截距式方程则有得当非零时(3)(四四)平面的一般方程平面的一般方程1、定理、定理1:任何x,y,z的一次方程.Ax+By+Cz+D=0都表示平面,且此平面的一个法向量是:n=(A,B,C)证证:A,B,C不能全为0,不妨设A 0,则方程可以化为它表示过定点 ,且 法向量为 n=(A,B,C)的平面.注:注:一次方程:Ax+B
6、y+Cz+D=0 (4)称为平面的一般方程.例例3:已知平面过点M0(1,2,3),且平行于平面2x 3y+4z 1=0,求其方程.解解:所求平面与已知平面有相同的法向量n=(2 3,4)2(x+1)3(y 2)+4(z 3)=0即即:2x 3y+4z 4=02.平面方程的几种特殊情形平面方程的几种特殊情形(1)过原点的平面方程由于O(0,0,0)满足方程,所以D=0.于是,过原点的平面方程为:A x+B y+C z=0Ax+By+Cz+D=0(2)平行于坐标轴的平面方程考虑平行于x轴的平面Ax+By+Cz+D=0,它的法向量n=(A,B,C)与x 轴上的单位向量 i=(1,0,0)垂直,所以
7、n i=A 1+B 0+C 0=A=0于是:平行于x 轴的平面方程是 By+Cz+D=0;平行于y 轴的平面方程是 Ax+Cz+D=0;平行于z 轴的平面方程是 Ax+By+D=0.特别:D=0时,平面过坐标轴.(3)平行于坐标面的平面方程平行于xOy 面的平面方程是 Cz+D=0;平行于xOz 面的平面方程是 By+D=0;平行于yOz 面的平面方程是 Ax+D=0.(即z=k)(即y=k)(即x=k)例例4:求通过x 轴和点(4,3,1)的平面方程.解解:由于平面过x 轴,所以 A=D=0.设所求平面的方程是 By+Cz=0又点(4,3,1)在平面上,所以3B C=0 C=3B所求平面方程
8、为 By 3Bz=0即即:y 3z=0 1n1n22若已知两平面方程是:1:A1x+B1y+C1z+D1=0法向量 n1=(A1,B1,C1)2:A2x+B2y+C2z+D2=0法向量 n2=(A2,B2,C2)1.定义定义1 两平面的法向量的夹角(通常指锐角)称为两平面的夹角.二、两平面的夹角二、两平面的夹角所以1n1n22平面1与2 相互平行规定规定:若比例式中某个分母为0,则相应的分子也为0.平面1与2 相互垂直A1A2+B1B2+C1C2=0特别特别:例例5:5:一平面通过两点M1(1,1,1)和M2(0,1,1),且垂直于平面 x+y+z=0,求它的方程.解解:设所求平面的一个法向量
9、 n=(A,B,C)已知平面 x+y+z=0的法向量 n1=(1,1,1)所以:n M1M2 且n n1 而M1M2=(1,0,2)于是:A (1)+B 0+C (2)=0 A 1+B 1+C 1=0解得:B=CA=2C取C=1,得平面的一个法向量n=(2,1,1)所以,所求平面方程是2 (x 1)+1 (y 1)+1 (z 1)=0即:2x y z=0M1(1,1,1),M2(0,1,1)设 P0(x0,y0,z0)是平面 Ax+By+Cz+D=0外一点,求 P0到这平面的距离d.在平面上任取一点P1(x1,y1,z1)P0P1Nn则 P1P0=(x0 x1,y0 y1,z0 z1)过P0点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三两 向量 混和
限制150内