八章节存储管理.ppt
《八章节存储管理.ppt》由会员分享,可在线阅读,更多相关《八章节存储管理.ppt(125页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八章节存储管理 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望n本章主要内容:本章主要内容:(1)缺少缺少缺少缺少MMU支持的内存管理;支持的内存管理;支持的内存管理;支持的内存管理;(2)内存管理内存管理内存管理内存管理3 3种模型;种模型;种模型;种模型;(3)标准标准标准标准LinuxLinux的内存管理、的内存管理、的内存管理、的内存管理、uClinuxuClinux内存管内存管内存管内存管 理及其的局限性;理及其的局限性;理及其的局限性;理及其的局限性;
2、(4)内存管理模块的启动过程;内存管理模块的启动过程;内存管理模块的启动过程;内存管理模块的启动过程;(5)用户程序的内存分布、用户程序的内存分布、用户程序的内存分布、用户程序的内存分布、relocreloc段机制、段机制、段机制、段机制、可可可可 执行文件格式和执行文件加载流程。执行文件格式和执行文件加载流程。执行文件格式和执行文件加载流程。执行文件格式和执行文件加载流程。MMU(Memory Management Unit)第第 8 章章 目录目录1 缺少缺少MMU支持的内存管理支持的内存管理2 FLAT平模式内存管理平模式内存管理 2.1 3种内存管理模型种内存管理模型 2.2 标准标准
3、Linux的内存管理的内存管理 2.3 uClinux内存管理内存管理 2.4 uClinux内存管理的局限性内存管理的局限性3 内存管理模块的启动过程内存管理模块的启动过程4 可执行程序的加载可执行程序的加载 4.1 用户程序的内存分布用户程序的内存分布 4.2 reloc段机制段机制 4.3 FLAT可执行文件格式可执行文件格式 4.4 执行文件加载流程执行文件加载流程 第第 8 章章 目录目录1 缺少缺少MMU支持的内存管理支持的内存管理2 FLAT平模式内存管理平模式内存管理 2.1 3种内存管理模型种内存管理模型 2.2 标准标准Linux的内存管理的内存管理 2.3 uClinux
4、内存管理内存管理 2.4 uClinux内存管理的局限性内存管理的局限性3 内存管理模块的启动过程内存管理模块的启动过程4 可执行程序的加载可执行程序的加载 4.1 用户程序的内存分布用户程序的内存分布 4.2 reloc段机制段机制 4.3 FLAT可执行文件格式可执行文件格式 4.4 执行文件加载流程执行文件加载流程8.1 缺少缺少MMU支持的内存管理支持的内存管理 内存管理是操作系统中非常重要的子模内存管理是操作系统中非常重要的子模块。块。如同普通操作系统一样,在嵌入式操作如同普通操作系统一样,在嵌入式操作系统中,内存管理实现的好坏对系统性能有系统中,内存管理实现的好坏对系统性能有决定性
5、的作用决定性的作用。8.1 缺少缺少MMU支持的内存管理支持的内存管理 Linux内核的内存管理内核的内存管理子模块性能优越。子模块性能优越。目前大多数使用的嵌入式目前大多数使用的嵌入式Linux解决方案中解决方案中都直接使用了都直接使用了标准标准Linux内存管理机制内存管理机制,或者对,或者对Linux内核的内存管理子模块做了很小的改动,内核的内存管理子模块做了很小的改动,但嵌入式但嵌入式Linux的内存管理仍然是值得关心的问的内存管理仍然是值得关心的问题。题。8.1 缺少缺少MMU支持的内存管理支持的内存管理 目前的目前的LinuxLinux内核已经被移植到大量的内核已经被移植到大量的非
6、非x86x86平台上,包括平台上,包括ARMARM,M68KM68K,PPCPPC,AlphaAlpha,SparcSparc等。等。其中其中uClinuxuClinux主要针对缺少主要针对缺少MMUMMU内存内存管理的优秀嵌入式管理的优秀嵌入式LinuxLinux操作系统。操作系统。8.1 缺少缺少MMU支持的内存管理支持的内存管理 目前,由于体积限制或者出于降低成本的考虑,目前,由于体积限制或者出于降低成本的考虑,嵌入式系统中所使用的微处理器大多缺少嵌入式系统中所使用的微处理器大多缺少MMU。这些硬件平台包括数字信号处理器这些硬件平台包括数字信号处理器(DSP),SoC(System on
7、 Chip),以及那些不具有以及那些不具有MMU的的微处理器,例如微处理器,例如ARM7TDMI,Motorola的的M68K龙珠系列等。龙珠系列等。8.1 缺少缺少MMU支持的内存管理支持的内存管理 这些没有这些没有MMUMMU的微处理器为传统的微处理器为传统LinuxLinux的应用造成了一个障碍,它们要求使用的应用造成了一个障碍,它们要求使用flatflat内内存模型存模型即没有虚拟内存即没有虚拟内存(分页页面交换分页页面交换)、内存地址转换、内存地址转换(分段分段)和内存保护的内存管和内存保护的内存管理机制。理机制。在基于在基于LinuxLinux的嵌入式操作系统中,的嵌入式操作系统中
8、,uClinuxuClinux因为具有在不带内存管理单元因为具有在不带内存管理单元(MMU)(MMU)的硬件平台上运行的能力而独领风骚。的硬件平台上运行的能力而独领风骚。8.1 缺少缺少MMU支持的内存管理支持的内存管理 它通过提供修改过的它通过提供修改过的LinuxLinux内核、内核、C C库和编库和编译器为嵌入式系统开发者提供了与标准译器为嵌入式系统开发者提供了与标准LinuxLinux相同的相同的APlAPl,实现了从,实现了从LinuxLinux到无到无MMUMMU的微处的微处理器上的无缝转化。理器上的无缝转化。目前,在无目前,在无MMUMMU平台上能够运行的平台上能够运行的Linu
9、xLinux仅有仅有uClinuxuClinux一家。一家。第第 8章章 目录目录1 缺少缺少MMU支持的内存管理支持的内存管理2 FLAT平模式内存管理平模式内存管理 2.1 3种内存管理模型种内存管理模型 2.2 标准标准Linux的内存管理的内存管理 2.3 uClinux内存管理内存管理 2.4 uClinux内存管理的局限性内存管理的局限性3 内存管理模块的启动过程内存管理模块的启动过程4 可执行程序的加载可执行程序的加载 4.1 用户程序的内存分布用户程序的内存分布 4.2 reloc段机制段机制 4.3 FLAT可执行文件格式可执行文件格式 4.4 执行文件加载流程执行文件加载流
10、程8.2.1 3种内存管理模型内存管理模型可以分成如下内存管理模型可以分成如下3种:种:1.单一程序模型单一程序模型2.多程序模型多程序模型3.具有地址转换硬件的内存管理模型具有地址转换硬件的内存管理模型1.单一程序模型单一程序模型 这是没有硬件地址转换的内存管理模型。一个应用程序可以对所有的物理内存地址进行寻址。应用程序始终在物理内存中的同一地址空间运行,一个时刻只有一个应用程序被加载运行,程序加载器把应用程序加载到内存低端,将操作系统加载到高端。2.多程序模型多程序模型 这也是没有硬件地址转换的内存管理模型。即使没有硬件地址转换功能,多个程序也可以共享相同的物理地址。在程序被加载到内存的时
11、候,改变程序中寻址指令(load,store,jump)所使用的地址值为当前被加载到的位置。正是使用了这种模型。uClinux 应用程序使用的是虚拟地址,CPU实际执行程序所使用的是物理地址,从虚拟地址到物理地址的转换需要操作系统和MMU硬件的参与。标准Linux以及大多数现代操作系统都使用这种内存管理模型。3.具有地址转换硬件的内存管理模型 第第 8章章 目录目录1 缺少缺少MMU支持的内存管理支持的内存管理2 FLAT平模式内存管理平模式内存管理 2.1 3种内存管理模型种内存管理模型 2.2 标准标准Linux的内存管理的内存管理 2.3 uClinux内存管理内存管理 2.4 uCli
12、nux内存管理的局限性内存管理的局限性3 内存管理模块的启动过程内存管理模块的启动过程4 可执行程序的加载可执行程序的加载 4.1 用户程序的内存分布用户程序的内存分布 4.2 reloc段机制段机制 4.3 FLAT可执行文件格式可执行文件格式 4.4 执行文件加载流程执行文件加载流程8.2.2 标准Linux的内存管理 Linux使用了上述的第三个模型(地址转换硬件的内存管理模型)。为了理解uClinux对标准Linux的裁减,首先必须清楚标准Linux中内存管理的各种基本概念。这里对相关于虚拟内存的各个概念作一个总结。8.2.2 标准Linux的内存管理 虚拟内存是一种对RAM和磁盘(或
13、称做主存和辅存)进行无缝混合访问的技术。所有的虚拟内存对于应用程序来说好像是真的存在一样,应用程序在加载的时候并不需要关心是否会超过系统中实际的物理RAM的大小8.2.2 标准Linux的内存管理 内核主要通过页目录和页表的地址转换功能将内核主要通过页目录和页表的地址转换功能将应用程序的虚拟地址转换成物理地址。应用程序的虚拟地址转换成物理地址。这个过程中可能将应用程序中使用的超过了实这个过程中可能将应用程序中使用的超过了实际物理内存大小的虚拟地址映射到适当的真实物理际物理内存大小的虚拟地址映射到适当的真实物理地址,从而使应用程序可以随心所欲地使用巨大的地址,从而使应用程序可以随心所欲地使用巨大
14、的虚拟存储空间虚拟存储空间(对对Linux 2.4Linux 2.4内核来说为内核来说为4GB)4GB)。8.2.2 标准Linux的内存管理 但是只通过地址映射还不能解决有限的物理但是只通过地址映射还不能解决有限的物理内存被虚拟地址空间所使用的问题,操作系统还内存被虚拟地址空间所使用的问题,操作系统还必须使用必须使用页面交换机制页面交换机制将那些暂时不再使用的内将那些暂时不再使用的内存空间交换到外存中以使其他程序,能够使用物存空间交换到外存中以使其他程序,能够使用物理内存。理内存。LinuxLinux没有将整个进程所使用的空间都交换到没有将整个进程所使用的空间都交换到外存中,而是对部分不再使
15、用的大小为外存中,而是对部分不再使用的大小为4KB 4KB 的页的页面进行交换,这样就获得了更多的灵活性面进行交换,这样就获得了更多的灵活性。应用程序在标准应用程序在标准LinuxLinux中的加载使用了中的加载使用了“按需按需调页调页”的策略,也就是说,应用程序在开始被加的策略,也就是说,应用程序在开始被加载的时候并没有一次被全部装载到内存中,只有载的时候并没有一次被全部装载到内存中,只有那些现在必需的代码和数据在开始进行了加载。那些现在必需的代码和数据在开始进行了加载。8.2.2 标准Linux的内存管理 在程序执行的过程中,如果遇到了不在内存在程序执行的过程中,如果遇到了不在内存中的程序
16、部分将产生页面错误,操作系统在处理中的程序部分将产生页面错误,操作系统在处理这个错误中断的时候会到外存中找到相应的应用这个错误中断的时候会到外存中找到相应的应用程序部分进行加载。程序部分进行加载。8.2.2 标准Linux的内存管理 这种设计是基于计算机科学中著名的90-10规则的:90的程序执行时间花费在整个程序10的代码上。所以只要保持我们用到的程序在内存中,就可以既满足程序的执行速度又节约物理内存空间。标准Linux中的内存管理模型如图如图8-1所示所示。第第 8章章 目录目录1 缺少缺少MMU支持的内存管理支持的内存管理2 FLAT平模式内存管理平模式内存管理 2.1 3种内存管理模型
17、种内存管理模型 2.2 标准标准Linux的内存管理的内存管理 2.3 uClinux内存管理内存管理 2.4 uClinux内存管理的局限性内存管理的局限性3 内存管理模块的启动过程内存管理模块的启动过程4 可执行程序的加载可执行程序的加载 4.1 用户程序的内存分布用户程序的内存分布 4.2 reloc段机制段机制 4.3 FLAT可执行文件格式可执行文件格式 4.4 执行文件加载流程执行文件加载流程8.2.3 uClinux的内存管理 由于由于M68K系列微处理器中没有分段的系列微处理器中没有分段的概念,所以标准概念,所以标准Linux内核中从虚拟地址到内核中从虚拟地址到线性地址的映射已
18、经不必存在了。线性地址的映射已经不必存在了。而且由于缺少了而且由于缺少了MMU硬件的支持,硬件的支持,uClinux不能支持虚拟内存管理和内存保护。不能支持虚拟内存管理和内存保护。8.2.3 uClinux的内存管理n这就意味着它完全不使用标准Linux内核中的分页管理机制,也就没有了页表和页目录对线性地址的映射,从而线性地址到物理地址的转换也是不需要进行任何工作的。n换句话说,uClinux中所使用的都是直接物理地址。8.2.3 uClinux的内存管理n而且,由于没有了虚拟内存管理功能,uClinux不再使用“按需调页”算法。这样在程序载入内存执行的时候需要将程序的全部映像都一次装入。n
19、那些比物理内存还大的程序将无法执行。8.2.3 uClinux的内存管理n 尽管如此,uClinux还是将整个物理内存划分成大小为4KB的页面。n 由数据结构page管理,有多少页面就有多少page结构,它们又作为元素组成一个数组mem_map。n 物理页面可以作为进程的代码、数据和堆栈的一部分,还可以存储装入的文件,也可以当作缓冲区。8.2.3 uClinux的内存管理 uClinux仍然使用标准Linux内核中的变型Buddy System机制来管理空闲的物理页面,bitmap表和free_area数组,以及相关的函数或宏_get_free_pages()、free_pages()、_ge
20、t_free_page()现在仍然在被使用。8.2.3 uClinux的内存管理n 进程可以向核心申请使用物理内存。这仍然通过使用传统的kmalloc()和kfree()实现。n 这些内存块来自于free_area数组,由blocksize表、size表、page_descriptor结构和block_header结构共同管理。8.2.3 uClinux的内存管理 而过去的vmalloc()和vfree()由于是从虚拟空间3GB以上的虚拟空间的最高端分配内存,所以现在对它们的实现只是简单地调用kmalloc()和kfree(),实际上分配的也是从空闲物理页面链表中获得的页面。8.2.3 uCl
21、inux的内存管理n 不使用虚拟空间的概念,虚存段结构vm_area_struct以及由它构成的线性链表和AVL树都不再使用。n 没有了虚拟内存的应用,也就不再有将页面换出到外存中的机制。n 所以过去的kswapd页面换出守护进程和交换空间的页面管理数据结构在uClinux中都被删除。第第 8章章 目录目录1 缺少缺少MMU支持的内存管理支持的内存管理2 FLAT平模式内存管理平模式内存管理 2.1 3种内存管理模型种内存管理模型 2.2 标准标准Linux的内存管理的内存管理 2.3 uClinux内存管理内存管理 2.4 uClinux内存管理的局限性内存管理的局限性3 内存管理模块的启动
22、过程内存管理模块的启动过程4 可执行程序的加载可执行程序的加载 4.1 用户程序的内存分布用户程序的内存分布 4.2 reloc段机制段机制 4.3 FLAT可执行文件格式可执行文件格式 4.4 执行文件加载流程执行文件加载流程8.2.4 uClinux内存管理的局限性 由于缺少了MMU硬件的支持,uClinux的多任务管理功能受到一定限制:1.uClinux中无法实现fork()而只能使用vfork()这并不意味着uClinux不具有多任务功能,而是父进程在调用vfork()之后必须在子进程调用exec()或者exit()之前阻塞。8.2.4 uClinux内存管理的局限性2.标准Linux
23、中的内存分段为应用程序提供了接近无限的堆空间和栈空间,而uClinux为可执行程序在紧随它的数据段结束处分配堆栈空间。这样如果堆增长的太大,它将可能覆盖程序的静态数据段和代码段。8.2.4 uClinux内存管理的局限性3.uClinux中没有自动扩展的栈,也没有brk()调用。用户必须通过使用mmap()来分配内存空间。可以在程序的编译过程中指定它所使用的栈大小。4.不具有内存保护。任何程序都有可能导致内核崩溃。8.2.4 uClinux内存管理的局限性 uClinux与标准Linux的主要区别在于它针对没有MMU的处理器进行改造。uClinux所做的修改最大的部分理所当然位于内存管理部分,
24、而内存管理上最大变化就是uClinux没有使用虚拟内存机制。8.2.4 uClinux内存管理的局限性 这样,标准Linux的内存管理模块中的许多功能实际上都被抛弃了,诸如对页目录和页表的管理,对于交换空间的维护,页交换内核守护进程和页面换出功能,缺页中断和页面保护机制等。8.2.4 uClinux内存管理的局限性 而为了解决由此产生的新问题,uClinux同时设计了一种新的可执行文件格式:flat,以及修改了部分进程管理的代码:如用vfork()来代替了fork()调用,实现了无法共享页面的do_mmap()等。uClinux下的多任务管理远比Linux简单,因为没有进程的页表项和保护机制要
25、处理。8.2.4 uClinux内存管理的局限性 内核的调度器不需要进行修改,唯一需要完成的工作就是进行程序上下文的正确保存和恢复。这些上下文包括所有的在进程被中断的时候必须保存的寄存器的值。8.2.4 uClinux内存管理的局限性 这些机制的缺少归根结底都在于微处理芯片没有MMU的支持。例如,在没有MMU的处理器上不可能实现内存共享和保护,这是由于各种UNIX的内存共享都是需要MMU中的页表和页目录管理功能支持的。8.2.4 uClinux内存管理的局限性 标准Linux中的内存共享以页面共享的形式实现,共享该页的各个进程的页表项直接指向共享页,当共享状态发生变化的时候共享该页的各进程的页
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 章节 存储 管理
限制150内