《第14章碰撞.ppt》由会员分享,可在线阅读,更多相关《第14章碰撞.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第1414章碰撞章碰撞理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社2 14.1 碰撞现象的特征与分类碰撞现象的特征与分类 碰撞现象的基本特征:碰撞现象的基本特征:物体间的碰撞力巨大,其运动状态在极短的时间内发生明显的改变,加速度非常大,作用力的数值也非常大。碰撞碰撞是工程实际和平日生活中常见的力学现象,是工程实际和平日生活中常见的力学现象,如飞机着陆、飞船溅落、汽锤打桩、锤击铁钉等都是如飞机着陆、飞船溅落、汽锤打桩、锤击铁钉等都是碰撞的例子。碰撞的例子。碰撞力(瞬时力):碰撞力(瞬时力):在碰撞过程中出现的数值很大的力称为碰撞力;由于其作用时间非常短促,所以也称为瞬时力
2、。14.1.114.1.1 碰撞现象的特征碰撞现象的特征理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社3 (1)在碰撞过程中,碰撞力与重力、弹性力等普通力相比要大得多,因此,普通力的冲量可以忽略不计。但必须注意,在碰撞前和碰撞后,普通力对物体运动状态的改变作用必须要考虑。(2)由于碰撞过程非常短暂,所以物体在碰撞过程的位移很小,可以忽略不计,即认为物体在碰撞开始时和碰撞结束时的位置相同。两个简化:两个简化:理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社4 14.1.214.1.2 碰撞现象的分类碰撞现象的分类对心碰撞对心碰撞:碰撞时两物体质心的连线与接触
3、点公法线重合。否则称为偏心碰撞偏心碰撞。正碰撞正碰撞:两物体质心的速度沿着公法线,称为正碰撞。否则称为斜碰撞斜碰撞。理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社5 碰撞过程中物体都会发生变形。根据碰撞结束后物体变形的恢复程度,完全恢复的碰撞称为完全弹性碰撞,这时没有动能损失;物体变形丝毫没有恢复的称为塑性碰撞,物体变形能够部分恢复的碰撞称为弹性碰撞。理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社6 两个基本定理:两个基本定理:根据碰撞的规律,一般不用力来度量碰撞的作用,动能定理也不适用。一般采用积分形式的动量定理和动量矩定理。14.2.1 适用于直线运
4、动的冲量定理。设质点的质量为 m,碰撞开始时的速度v,结束时的速度u,质点所受的碰撞力为F,普通力的冲量可略去不计,对该质点应用动量定理,有:14.214.2 碰撞过程的适用定理碰撞过程的适用定理理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社将这n个方程相加,得:由于内碰撞冲量总是成对出现,且大小相等,方向相反,因此 ,故:对于有n个质点组成的质点系,作用于第 i 个质点上的碰撞冲量分为外冲量 和内冲量 ,则有:7 它表明,质点系在碰撞前后动量的改变,等于作用于质点系的外碰撞冲量的矢量和。(i=1,2,n)冲量定理理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业
5、出版社8 由于质点系的动量可以用总质量m与质心速度的乘积来表示,上式又可以写成:式中vC和uC分别为碰撞前、后物体质心的速度。理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社9 14.2.2 适用于定点转动的冲量矩定理。由n个质点组成的质点系,其对固定点O的动量矩定理的微分形式为:式中LO为质点系对于定点O的动量,为作用于质点系的外力对点O的主矩。将上式积分,得:它表明,质点系在碰撞前、后对定点O动量矩的变化,等于作用于质点系的外碰撞冲量对同一点的主矩。冲量矩定理理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社对于作平面运动刚体的碰撞问题,可以用上式计算其转
6、动部分,用 计算其平动部分,这两个方程统称为刚体平面运动的碰撞方程。10 14.2.3 适用于刚体平面运动的碰撞方程。质点系相对于质心的动量矩定理与相对于固定点的动量矩定理具有相同的形式。可以写出相对于质心的冲量矩定理:对于在其质量对称面内作平面运动的刚体,其相对于质心的冲量矩定理可写为代数量形式:理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社11 14-3 恢复因数与动能损失恢复因数与动能损失考虑一物体对固定面的正碰撞,如图所示。14.3.1 物体对固定面的正碰撞碰撞过程分为两个阶段:碰撞过程分为两个阶段:变形阶段变形阶段:质心速度为v的物体沿着法向直接撞击于固定面,由于
7、受到固定面碰撞冲量I1的作用,物体变形迅速增大,而其速度迅速减小到零。在这一阶段应用冲量定理在y轴的投影式,有理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社12 变形恢复阶段变形恢复阶段:物体的弹性变形逐渐恢复,并获得反向速度。当物体以速度u离开固定面时,标志着碰撞过程结束。设第二阶段的碰撞冲量为I2,对第二阶段应用冲量定理在y轴的投影式,有:由于碰撞过程中的动能损失,物体在碰撞后的速度u总是小于碰撞前的速度v。牛顿在研究碰撞现象时发现,对于材料确定的物体,无论碰撞前后速度如何,其碰撞前后速度大小之比为一与材料性质有关的常数,这一常数称为恢复因数恢复因数,定义为理论力学电子
8、教案理论力学电子教案 C 机械工业出版社机械工业出版社13 恢复系数恢复系数反映了碰撞前后物体动能的损失程度,也反映了物体变形的恢复程度。注意到碰撞前后的速度与碰撞过程中两个阶段的碰撞冲量有关,上式可表示为:恢复因数是反映材料碰撞性质的常数,在一般情况下,碰撞过程中都有动能损失,因而一般0k1,这样的碰撞称为弹性碰撞。k=1 理想情况完全弹性碰撞。k=0 极限情况非弹性碰撞或塑性碰撞。理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社14 物体以质心速度v沿着与法线成角的方向撞击于固定面,碰撞结束后,沿着与法线成角的方向以速度u跳离,如图所示。14.3.2 物体对固定面的斜碰撞
9、物体对固定面的斜碰撞 设不计摩擦,碰撞只发生在法线方向,un和vn分别为u和v在法线上的投影。定义恢复系数定义恢复系数:经推导,恢复因数可以表示成由于k1,所以,当碰撞物体光滑时,总有。理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社1514.3.3 两物体间的正碰撞两物体间的正碰撞1、两物体碰撞的恢复因数、两物体碰撞的恢复因数设:两物体碰撞 碰撞前:碰撞结束:(沿质心连线)分析:研究对象:两物体组成的质点系。由于没有外碰撞冲量,质点系在质心连线方向上动量守恒,即:理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社16 设碰撞的第一阶段结束后,两物体获得相同的
10、速度u,物体之间的碰撞冲量为I1,对两物体分别应用动量定理在质心连线方向的投影式,得:设碰撞的第二阶段两物体之间的碰撞冲量为I2,则有:得两物体碰撞的恢复因数即对于两物体的正碰撞,恢复因数等于两物体碰撞前后质心相对速度的比值。理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社17 14.3.4 碰撞过程中的动能损失碰撞过程中的动能损失一、考虑两物体碰撞后各自速度的变化由正碰撞结束时两质心的速度公式知:在完全弹性碰撞情况下,k=1,上式变为:理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社18 对于m1=m2的情况,则有u1=v2,u2=v1,即两物体相撞后互换
11、了速度。在塑性碰撞情况下,k=0,有:即碰撞后,两物体以相同的速度运动。二、两物体碰撞过程中的能量损失 碰撞开始:碰撞结束:碰撞过程中的能量损失为理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社求:小物块B移动的距离s。19例 14-1 已知:质量为m1,长为l的杆由水平位置静止释放,在铅垂位置与质量为m2的小物块B发生塑性碰撞。动滑动摩擦因数为f。解:把整个系统的运动过程分为三个阶段,即碰前阶段,碰撞阶段和碰后阶段。1、碰前阶段 在杆由水平位置到铅垂位置过程中,只有重力m1g做功。由积分形式的动能定理,有:由此求得杆到达铅垂位置时的角速度:理论力学电子教案理论力学电子教案
12、C 机械工业出版社机械工业出版社202、碰撞阶段 设物块受到杆OA的碰撞冲量I(如图),则有:对杆OA,其所受冲量除 以外,还有轴承O处的外冲量IOx和IOy(如图)。为了在方程中不出现这两个未知量,根据对O点的冲量矩定理,有:由于是塑性碰撞,恢复因数k=0,碰撞后物块B的速度与杆端A的速度相等,即u2=l2。联立求解以上诸式,得物块B在碰撞结束时的速度为:理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社213、碰后阶段 对物块B应用动能定理,有:最后得物块B移动的距离为理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社求:圆柱体碰撞后质心C的速度uC、圆柱体
13、的角速度2和碰撞冲量。22例 14-2 已知:质量为m,半径为r,质心速度为vC的匀质圆柱体,沿水平面作无滑动的滚动,突然与高度为h(h r)的凸台发生塑性碰撞。解:1、碰撞前,圆柱体作平面运动,与水平面的接触点P为速度瞬心,圆柱体的角速度有:由于是塑性碰撞,碰撞过程中圆柱体绕过接触点O的水平轴转动。设碰撞结束时圆柱体的角速度为2,则质心C的速度uC的大小为理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社23 方向垂直于OC,如图所示。O处的碰撞冲量I可分解为切向分量It和法向分量In,可根据碰撞阶段的基本定理求解。根据对水平轴O的冲量矩定理,有:碰撞开始时圆柱体对轴O的动量
14、矩为:碰撞结束时圆柱体对轴O的动量矩:碰撞结束时圆柱体质心C的速度:理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社24这时圆柱体的角速度:根据质点系冲量定理在点O的切线和法线方向的投影,有:得:最后求得:理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社25 14.4 撞击中心的概念撞击中心的概念 设受碰撞冲量作用刚体绕固定轴 z 转动。由冲量矩定理在 z 轴上的投影式,有:设刚体对z轴的转动惯量为Jz,碰撞前后刚体转动的角速度分别为1和2,则上式成为求出:理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社26 下面研究具有质量对称面,且绕垂
15、直于对称面的轴O转动的刚体,设有外碰撞冲量I作用于对称面内,轴承处的约束碰撞冲量为IOx和IOy,对刚体应用冲量定理,有 定轴转动刚体碰撞前后角速度的变化,等于作定轴转动刚体碰撞前后角速度的变化,等于作用于刚体上的外碰撞冲量对于转轴的主矩除以刚体用于刚体上的外碰撞冲量对于转轴的主矩除以刚体对该轴的转动惯量。对该轴的转动惯量。若碰撞发生时有vCy=uCy=0,轴承处的约束碰撞冲量为理论力学电子教案理论力学电子教案 C 机械工业出版社机械工业出版社27 如果能使外碰撞冲量I满足 则可使轴承处的碰撞冲量为零,这对于延长碰撞装置的使用寿命是大有益处的。为使Iy=0,只要外碰撞冲量I与y轴垂直即可(如图所示)。需要:得 当外碰撞冲量作用于刚体质量对称面内的撞击中心,且垂直于轴承中心与质心的连线时,在轴承处将不引起碰撞冲量。l是I的作用线到轴O的距离。满足上式的点称为撞击中心撞击中心结束结束
限制150内