定积分第六章副本.ppt
《定积分第六章副本.ppt》由会员分享,可在线阅读,更多相关《定积分第六章副本.ppt(61页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、定积分第六章副本 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望第一节机动 目录 上页 下页 返回 结束 定积分的元素法一、什么问题可以用定积分解决一、什么问题可以用定积分解决?二二、如何应用定积分解决问题、如何应用定积分解决问题?第六六章 表示为一、什么问题可以用定积分解决一、什么问题可以用定积分解决?1)所求量 U 是与区间a,b上的某分布 f(x)有关的2)U 对区间 a,b 具有可加性,即可通过“大化小大化小,常代变常代变,近似和近似和,取极限取极限”定积
2、分定义机动 目录 上页 下页 返回 结束 一个整体量;二二、如何应用定积分解决问题、如何应用定积分解决问题?第一步第一步 利用“化整为零,以常代变”求出局部量的微分表达式第二步第二步 利用“积零为整,无限累加”求出整体量的积分表达式这种分析方法成为元素法元素法(或微元分析法微元分析法)元素的几何形状常取为:条,带,段,环,扇,片,壳 等近似值精确值第二节 目录 上页 下页 返回 结束 四、四、旋转体的侧面积旋转体的侧面积(补充补充)三、已知平行截面面积函数的三、已知平行截面面积函数的 立体体积立体体积第二节一、一、平面图形的面积平面图形的面积二、二、平面曲线的弧长平面曲线的弧长 机动 目录 上
3、页 下页 返回 结束 定积分在几何学上的应用 第六六章 一、平面图形的面积一、平面图形的面积1.直角坐标情形直角坐标情形设曲线与直线及 x 轴所围曲则机动 目录 上页 下页 返回 结束 边梯形面积为 A,右下图所示图形面积为 例例1.计算两条抛物线在第一象限所围所围图形的面积.解解:由得交点机动 目录 上页 下页 返回 结束 例例2.计算抛物线与直线的面积.解解:由得交点所围图形为简便计算,选取 y 作积分变量,则有机动 目录 上页 下页 返回 结束 例例3.求椭圆解解:利用对称性,所围图形的面积.有利用椭圆的参数方程应用定积分换元法得当 a=b 时得圆面积公式机动 目录 上页 下页 返回 结
4、束 一般地,当曲边梯形的曲边由参数方程 给出时,按顺时针方向规定起点和终点的参数值则曲边梯形面积机动 目录 上页 下页 返回 结束 例例4.求由摆线的一拱与 x 轴所围平面图形的面积.解解:机动 目录 上页 下页 返回 结束 2.极坐标情形极坐标情形求由曲线及围成的曲边扇形的面积.在区间上任取小区间则对应该小区间上曲边扇形面积的近似值为所求曲边扇形的面积为机动 目录 上页 下页 返回 结束 对应 从 0 变例例5.计算阿基米德螺线解解:点击图片任意处点击图片任意处播放开始或暂停播放开始或暂停机动机动 目录目录 上页上页 下页下页 返回返回 结束结束 到 2 所围图形面积.例例6.计算心形线所围
5、图形的面积.解解:(利用对称性)心形线 目录 上页 下页 返回 结束 例例7.计算心形线与圆所围图形的面积.解解:利用对称性,所求面积机动 目录 上页 下页 返回 结束 例例8.求双纽线所围图形面积.解解:利用对称性,则所求面积为思考思考:用定积分表示该双纽线与圆所围公共部分的面积.机动 目录 上页 下页 返回 结束 答案答案:二、平面曲线的弧长二、平面曲线的弧长定义定义:若在弧 AB 上任意作内接折线,当折线段的最大边长 0 时,折线的长度趋向于一个确定的极限,此极限为曲线弧 AB 的弧长,即并称此曲线弧为可求长的.定理定理:任意光滑曲线弧都是可求长的.(证明略)机动 目录 上页 下页 返回
6、 结束 则称(1)曲线弧由直角坐标方程给出:弧长元素(弧微分):因此所求弧长(P168)机动 目录 上页 下页 返回 结束(2)曲线弧由参数方程给出:弧长元素(弧微分):因此所求弧长机动 目录 上页 下页 返回 结束(3)曲线弧由极坐标方程给出:因此所求弧长则得弧长元素(弧微分):(自己验证)机动 目录 上页 下页 返回 结束 例例9.两根电线杆之间的电线,由于其本身的重量,成悬链线.求这一段弧长.解解:机动 目录 上页 下页 返回 结束 下垂悬链线方程为例例10.求连续曲线段解解:的弧长.机动 目录 上页 下页 返回 结束 例例11.计算摆线一拱的弧长.解解:机动 目录 上页 下页 返回 结
7、束 例例12.求阿基米德螺线相应于 02一段的弧长.解解:(P349 公式39)小结 目录 上页 下页 返回 结束 三三、已知平行截面面积函数的立体体积、已知平行截面面积函数的立体体积设所给立体垂直于x 轴的截面面积为A(x),则对应于小区间的体积元素为因此所求立体体积为机动 目录 上页 下页 返回 结束 上连续,特别,当考虑连续曲线段轴旋转一周围成的立体体积时,有当考虑连续曲线段绕 y 轴旋转一周围成的立体体积时,有机动 目录 上页 下页 返回 结束 例例13.计算由椭圆所围图形绕 x 轴旋转而转而成的椭球体的体积.解解:方法方法1 利用直角坐标方程则(利用对称性)机动 目录 上页 下页 返
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 第六 副本
限制150内