对数及其运算1教学文稿.ppt
《对数及其运算1教学文稿.ppt》由会员分享,可在线阅读,更多相关《对数及其运算1教学文稿.ppt(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、对数及其运算1所以须要创立新的符号,能在已知底数和幂的值时,表示出该指数的表达式.这就是我们本节课将要学习的对数对数及对数符号对数符号.又看如下问题:现今我国总产值每年比上年约平均增长8%,问经过几年,总产值是今年的2倍?设今年总产值为a亿元,经过x年,总产值是今年的2倍,则可列式:a(1+8%)x=2a,即得 1.08x=2 此式的x如何解出(表达出)呢?新课引入可是也有不少与上列数学式同类的式子,还不易解决和表达.例如:形成概念 一般地,如果a(a0,a1)的 b 次幂等于N,即ab=N,那么数b叫做以以a a为底为底 N N的对数的对数,记作:logaN=b(式中的a叫做对数的底数,N叫
2、做真数.)(对数式“logaN”表示的意思就是:一个乘方的底数是a,乘方的结果是N时所“对应的那个指数对应的那个指数”)书写格式:logaN对数等式logaN=b写为乘方等式就是ab=N,乘方等式ab=N,写为对数等式就是logaN=b但要注意两式中字母a,N,b的称呼的异同.logaN=b 就是 ab=N底数底数底数底数真数真数幂幂对数对数指数指数(a0,a1(a0,a1)形成概念概念深化概念深化由对数式定义:logaN=b ab=N(a0,a1)可知,不论b是什么实数,总有ab0,即式ab=N中的幂N永远是正数,也即式logaN中的真数N永远是正数.因此负数和零没有对数负数和零没有对数.例
3、如:式log20,log3(-3),以及log05,log-23,log12等都无意义.有了对数知识,前面提出的“已知底数和幂的值已知底数和幂的值,如何用如何用(含有含有底数和幂的底数和幂的)式子去表达出与其对应的指数式子去表达出与其对应的指数”之之问题就迎刃而解了.例如,因为42=16,所以底数为4,幂为16,对数(对应的指数)是2,就可写为 log416=2从事例:20=1,写为对数就是log21=0;(0.3)0=1就是log0.31=0;100=1就是log101=0.猜想应有公式:证明:设loga1=x 由对数的定义就有ax=1,又1=a0(a0,a1)ax=a0 一定有x=0.即得
4、 loga1=0.logloga a1 1=0 0(a0,a(a0,a1)1)从事例:21=2,写为对数就是loglog2 22=12=1;(0.3)1=0.3就是loglog0.30.30.3=10.3=1;101=10就是loglog101010=110=1.猜想应有公式:logloga aa a=(a0,a1)(a0,a1)1概念深化证明:设logaa=x 由对数的定义就有ax=a,又a=a1(a0,a1)ax=a1 一定有x=1.即得 logaa=1.a a =logaNX X思考:思考:此指数式(指数是logaN)写为对数式就是 logaX=logaN,令 logaX=logaN=b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 对数 及其 运算 教学 文稿
限制150内