工程测量6讲解学习.ppt
《工程测量6讲解学习.ppt》由会员分享,可在线阅读,更多相关《工程测量6讲解学习.ppt(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、工程测量66.1 6.1 测量误差概述测量误差概述 测量误差及其来源测量误差及其来源 测量误差的来源测量误差的来源(1 1)仪器误差:仪器误差:仪器精度的局限、轴系残余误差等。仪器精度的局限、轴系残余误差等。(2 2)人为误差:人为误差:判断力和分辨率的限制、经验等。判断力和分辨率的限制、经验等。(3 3)外界条件的影响:外界条件的影响:温度变化、风、大气折光等温度变化、风、大气折光等 测量误差的表现形式测量误差的表现形式 测量误差(真误差测量误差(真误差=观测值-真值)(观测值与真值之差)(观测值与观测值之差)11/10/2022 2 烟台大学土木工程学院例:例:误差误差 处理方法处理方法
2、钢尺尺长误差钢尺尺长误差 l ld d 计算改正计算改正 钢尺温度误差钢尺温度误差 l lt t 计算改正计算改正 水准仪视准轴误差水准仪视准轴误差I I 操作时抵消操作时抵消(前后视等距前后视等距)经纬仪视准轴误差经纬仪视准轴误差C C 操作时抵消操作时抵消(盘左盘右取平均盘左盘右取平均)2.2.系统误差系统误差 误差出现的大小、符号相同,或按误差出现的大小、符号相同,或按 规律性变化,具有规律性变化,具有积累性积累性。系统误差可以消除或减弱系统误差可以消除或减弱。(计算改正、观测方法、仪器检校计算改正、观测方法、仪器检校)测量误差分为:测量误差分为:粗差粗差、系统误差系统误差和和偶然误差偶
3、然误差6.2 6.2 测量误差的种类测量误差的种类1.1.粗差粗差(错误错误)超限的误差超限的误差11/10/2022 3 烟台大学土木工程学院3.3.偶然误差偶然误差误差出现的大小、符号各不相同,误差出现的大小、符号各不相同,表面看无规律性。表面看无规律性。例:估读数、气泡居中判断、瞄准、对中等误差,例:估读数、气泡居中判断、瞄准、对中等误差,导致观测值产生误差导致观测值产生误差 。准确度(测量成果与真值的差异)最或是值(最接近真值的估值,最可靠值)测量平差(求解最或是值并评定精度)4.4.几个概念几个概念:精(密)度(观测值之间的离散程度)11/10/2022 4 烟台大学土木工程学院举例
4、举例:在某测区,等精度观测了在某测区,等精度观测了358358个三角形的内个三角形的内 角之和,得到角之和,得到358358个三角形闭合差个三角形闭合差 i i(偶然误偶然误 差,也即真误差差,也即真误差),然后对三角形闭合差,然后对三角形闭合差 i i 进行分析。进行分析。分析结果表明,分析结果表明,当观测次数很多时,偶然当观测次数很多时,偶然 误差的出现,呈现出统计学上的规律性。误差的出现,呈现出统计学上的规律性。而而 且,观测次数越多,规律性越明显。且,观测次数越多,规律性越明显。6.3 6.3 偶然误差的特性偶然误差的特性11/10/2022 5 烟台大学土木工程学院11/10/202
5、2 6 烟台大学土木工程学院用用频率直方图频率直方图表示的偶然误差统计:表示的偶然误差统计:频率直方图的中间高、两边低,并向横轴逐渐逼近,频率直方图的中间高、两边低,并向横轴逐渐逼近,对称于对称于y轴。轴。频率直方图中,每一条形的面积表示误差出现在该区频率直方图中,每一条形的面积表示误差出现在该区 间的频率间的频率k/n,而所有条形的,而所有条形的总面积等于总面积等于1。各条形顶边中点各条形顶边中点连线经光滑后的曲连线经光滑后的曲线形状,表现出偶线形状,表现出偶然误差的普遍规律然误差的普遍规律 图6-1 误差统计直方图11/10/2022 7 烟台大学土木工程学院从误差统计表和频率直方图中,可
6、以归纳出偶然误从误差统计表和频率直方图中,可以归纳出偶然误 差的差的四个特性四个特性:特性(1)、(2)、(3)决定了特性(4),特性特性(4)具有实用意义。具有实用意义。3.3.偶然误差的特性偶然误差的特性(1)(1)在一定的观测条件下,偶然误差的绝对值不会超过一定在一定的观测条件下,偶然误差的绝对值不会超过一定 的限值的限值(有界性有界性);(2)(2)绝对值小的误差比绝对值大的误差出现的机会多绝对值小的误差比绝对值大的误差出现的机会多(趋向性趋向性);(3)(3)绝对值相等的正误差和负误差出现的机会相等绝对值相等的正误差和负误差出现的机会相等(对称性对称性);(4)(4)当观测次数无限增
7、加时,偶然误差的算术平均值趋近于零当观测次数无限增加时,偶然误差的算术平均值趋近于零 (抵偿性抵偿性):11/10/2022 8 烟台大学土木工程学院偶然误差具有正态分布的特性偶然误差具有正态分布的特性当观测次数当观测次数n n无限增多无限增多(n(n)、误差区间误差区间d d 无限缩小无限缩小(d d 0)0)时,各矩形的顶边就连成一条光滑的曲线,时,各矩形的顶边就连成一条光滑的曲线,这条曲线称为这条曲线称为“正态分布曲正态分布曲线线”,又称为,又称为“高斯误差分高斯误差分布曲线布曲线”。所以偶然误差所以偶然误差具有具有正态分布正态分布的特性。的特性。图6-1 误差统计直方图11/10/20
8、22 9 烟台大学土木工程学院1.1.方差与标准差方差与标准差 由正态分布密度函数式中 、为常数;=2.72828x=y正态分布曲线(a=0)令:令:,上式为:6.4 6.4 衡量精度的指标衡量精度的指标11/10/2022 10 烟台大学土木工程学院标准差 的数学意义 表示表示 的的离散程度离散程度x=y较小较大称为标准差标准差:上式中,称为方差方差:11/10/2022 11 烟台大学土木工程学院测量工作中,用中误差中误差作为衡量观测值精度的标准。中误差中误差:观测次数无限多时,用标准差观测次数无限多时,用标准差 表示偶然误差的离散情形:表示偶然误差的离散情形:上式中,偶然误差上式中,偶然
9、误差 为观测值为观测值 与真值与真值X之差:之差:观测次数观测次数n n有限有限时,用时,用中误差中误差m表示偶然误差的离散情形:表示偶然误差的离散情形:i=i-X11/10/2022 12 烟台大学土木工程学院P123表5-211/10/2022 13 烟台大学土木工程学院 m m1 1小于小于m m2 2,说明第一组观测值的误差分布比较说明第一组观测值的误差分布比较集中集中,其其精度较高精度较高;相对地,第二组观测值的误差分布比;相对地,第二组观测值的误差分布比 较较离散,离散,其其精度较低:精度较低:m1=2.7是第一组观测值的中误差;m2=3.6是第二组观测值的中误差。11/10/20
10、22 14 烟台大学土木工程学院2.2.容许误差容许误差(极限误差)根据误差分布的密度函数,误差出现在微分区间d内的概率为:误差出现在K倍中误差区间内的概率为:将K=1、2、3分别代入上式,可得到偶然误差分别出现在一倍、二倍、三倍中误差区间内的概率:P(|m)=0.683=68.3 P(|2m)=0.954=95.4 P(|3m)=0.997=99.7 测量中,一般取两倍中误差(2m)作为容许误差,也称为限差:|容|=3|m|或|容|=2|m|11/10/2022 15 烟台大学土木工程学院 3.3.相对误差相对误差(相对中误差)误差绝对值与观测量之比。用于表示距离距离的精度。用分子为1的分数
11、表示。分数值较小相对精度较高;分数值较大相对精度较低。K2K1,所以距离,所以距离S2精度较高。精度较高。例例2 2:用钢尺丈量两段距离分别得用钢尺丈量两段距离分别得S S1 1=100=100米米,m,m1 1=0.02m=0.02m;S S2 2=200=200米米,m,m2 2=0.02m=0.02m。计算。计算S S1 1、S S2 2的相对误差。的相对误差。0.02 1 0.02 1 K1=;K2=100 5000 200 10000解:解:11/10/2022 16 烟台大学土木工程学院一一.一般函数的中误差一般函数的中误差令 的系数为 ,(c)式为:由于 和 是一个很小的量,可代
12、替代替上式中的 和 :(c)代入(b)得对(a)全微分:(b)设有函数:为独立独立观测值设 有真误差 ,函数 也产生真误差(a)6.5 6.5 误差传播定律误差传播定律11/10/2022 17 烟台大学土木工程学院对Z观测了k次,有k个式(d)对(d)式中的一个式子取平方:(i,j=1n且ij)(e)对K个(e)式取总和:(f)11/10/2022 18 烟台大学土木工程学院(f)(f)式两边除以K,得(g)式:(g)由偶然误差的抵偿性知:(g)式最后一项极小于前面各项,可忽略不计,则:则:前面各项即即(h)11/10/2022 19 烟台大学土木工程学院(h)考虑考虑 ,代入上式,得中误差
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 测量 讲解 学习
限制150内