数据统计分析初级统计及回归分析顾世梁.ppt
《数据统计分析初级统计及回归分析顾世梁.ppt》由会员分享,可在线阅读,更多相关《数据统计分析初级统计及回归分析顾世梁.ppt(65页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数据统计分析初级统计及回归分析顾世梁 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望 生物统计是关于试验的设计、实施,数据的收集、整理、分析和结果推论的科学。从事试验研究,需要对处理(措施、技术)的效应给出一个明确的结论(显著与否)。推论是先对研究对象的总体提出一种假设(hypothesis),再对该假设进行测验(test)以计算在假设总体中抽得实际样本(统计数)的概率来判断。1.1 二项总体分布二项总体分布(0,1 分布)若一个总体由0,1两种元素组成,这样的总
2、体称0,1总体。若取1的概率为p,记为P(1)=p,则P(0)=1-p=q,p+q=1.1 几种常见的分布几种常见的分布 概率计算比较复杂,生物统计中所用的概率计算主要利用变数分布进行。1.2 二项分布二项分布(binomial distribution)二项分布是指在=p的二项总体中,以样本容量n进行抽样,样本总和数 k(0kn)的概率分布。1.3 普松分布普松分布(poisson distribution)若n很大,p很小,其np=m,二项概率分布趋于普松分布。1.4 正态分布正态分布(normal distribution)若p接近0.5,n很大,二项概率分布趋于正态分布。正态分布是最重
3、要的连续性变数的分布,原因有3:1、试验研究中很多变数(性状)服从正态分布;2、一些间断性变数在一定条件下趋于正态分布;3、一些变数本身不服从正态,但其统计数(如平均数)在一定条件下(样本容量增大时)趋于正态分布。这第3点是一个很重要的性质,因为我们将来对处理效应的推断,往往是以平均数(或其它统计数)进行的。在对样本容量较大的统计数进行统计推断时,可不必考虑原变数服从何种分布,统计假设测验均可在正态分布的基础上进行。了解一个变数(或一个统计数)服从某种分布,其目标是为了计算该变数(统计数)落在某一区间的概率。P(axb)=?1.5 学生氏学生氏 t 分布分布(t distribution)标准
4、正态离差服从正态分布。上述u分布在实际应用中存在问题,最主要的是无法得到,人们自然想到用样本标准差 s 代替 计算u值,进而计算概率(假设测验)。但经抽样试验发现,这种替代是有问题的,尤其是在小样本情况下,s 的变异度较大(而是常量)。它直接的效果是由此算出的值比 u 的变异度大。后经WS Gosset(1908)导出了该统计数(t)的概率密度函数 f(t)。1.6 卡方分布卡方分布(2 distribution)1.7 F分布分布(F distribution,RA Fisher,1923)2 统计假设测验统计假设测验2.1 概念和基本步骤概念和基本步骤 我们在试验过程中获得了一个或多个样本
5、(统计数),其目的在于推断由此代表的总体(参数)。得出处理效应存在与否的定性结论。基本过程有4步:1)对未知总体)对未知总体(参数参数)提出假设提出假设 H0:=0,HA:0;H0:=0,HA:0;2)设定一个否定)设定一个否定H0假设的小概率标准(显著水平)假设的小概率标准(显著水平)(=0.05,=0.01););3)计算在假设条件下比实得样本)计算在假设条件下比实得样本(统计数统计数)还偏的概率还偏的概率p。4)根据)根据p与与值的大小,接受或否定值的大小,接受或否定H0假设。假设。2.2 几种常用的假设测验几种常用的假设测验指的是该统计数的标准误,亦即该统计数分布的标准差。ttest(
6、x,m0)ttest2(x1,x1)2.3 假设测验的本质假设测验的本质1)显著性的大小是决定统计数与假设参数间、统计数间差异显著性的主要因素。试验研究中应尽量减小统计数的标准误。一是减小试验误差(s);二是增大样本容量(n)。2)假设测验的错误 利用概率进行测验,有些情况下会犯错误。当正确的假设被否定时,就犯了弃真错误(I型错误,错误);当错误的假设被接受时,就犯了取伪错误(II型错误,错误)。犯两类错误的概率不同。3 方差分析方差分析 方差分析是将多个样本作为一个整体,将总变异分解成相应变异来源的平方和和自由度,得到各变异来源方差的数量估计,用F测验鉴别样本间的差异显著性。分三个内容:1)
7、分解平方和自由度,计算各变异来源的方差;其中MSe(或se)比较重要,它是测验组间效应存在与否的标准;2)F测验,F=MSt/MSe;3)多重比较,当F测验显著,应对处理平均数的差异显著性作进一步说明。3.1 单向分组资料的方差分析单向分组资料的方差分析处理观察值Tixi1x11x12x1jx1nT1x12x21x22x2jx2nT2x2ixi1xi2xijxinTixikxk1xk2xkjxknTkxkxij为第为第i个处理的第个处理的第j个观察值,个观察值,i=1,2,k,j=1,2,n.Data structure方差分析结果尽量以方差分析表表示。anova1(x)3.2 两向分组资料的
8、方差分析两向分组资料的方差分析AB1 2 j n Tixi1x11x12x1jx1nT1x12x21x22x2jx2nT2x2ixi1xi2xijxinTixikxk1xk2xkjxknTkxkT.1T.2T.jT.nTxxij为为A因素第因素第i个水平和个水平和B因素第因素第j个水平组合个水平组合(处理处理)的反应量,的反应量,i=1,2,k;j=1,2,n.Data structureAnova2(x),或anova2(x,n)。3.3 系统分组资料的方差分析系统分组资料的方差分析xijk为第为第i组、第组、第j亚组、第亚组、第k个反应量,个反应量,i=1,2,l;j=1,2,m;k=1,
9、2,n.Data structurexijk 较复杂的系统分组资料还可能在亚组中继续再分成小亚组(小小亚组);每一组具有不同的亚组数(mi不全相同),每一亚组具有不完全相同的观察值数目(nij不全相同)。xijk为第为第i 组组,第第j亚组亚组,第第k个个(处理处理)的反应量,的反应量,i=1,2,l;j=1,2,mi;k=1,2,nij.3.4 单因素完全随机试验资料的分析单因素完全随机试验资料的分析 即单向分组资料的方差分析。即单向分组资料的方差分析。3.5 单因素随机区组试验资料的分析单因素随机区组试验资料的分析 即两向分组资料的方差分析。即两向分组资料的方差分析。3.6 二因素随机区组
10、试验资料的分析二因素随机区组试验资料的分析 A因因素素有有a个个水水平平,B因因素素有有b个个水水平平,均均衡衡搭搭配配时时有有ab个个处处理理;r个个重重复复(r个个区区组组),abr个观察值。方差分析分两步:个观察值。方差分析分两步:1)构建处理区组两向表,按处理区组两向分组数据模型分解平方和、自由度:2)构建AB两向表,按AB因素两向分解平方和、自由度。二因素、多因素完全随机试验、随机区组试验资料的方差分析均可用anovan的命令实现。格式:anovan(x,group,model)Anovan(多因素资料的方差分析)(多因素资料的方差分析)Anovan(x,group,model)三因
11、素三因素 model=1 2 3 4 5 6 7(三因素方差分析编码表三因素方差分析编码表)数值数值含义含义1A(主效主效)2B(主效主效)3AB(互作互作)4C(主效主效)5AC(互作互作)6BC(互作互作)7ABC(互作互作)四因素方差分析编码表四因素方差分析编码表(model)数 值含 义数 值含 义1A(主效主效)9AD2B(主效主效)10BD3AB(互作互作)11ABD4C(主效主效)12CD5AC13ACD6BC14BCD7ABC15ABCD8D(主效主效)3.7 一些处理效应再分解的方差分析 1)单一自由度比较;2)其他分解的一些实例。Lsh.m;cg.m.处理n平均数 ABCD
12、 vs EAB vs CDA42727.875T1=44625.75T1=206B424.5C428.530T2=240D431.5E42020T2=80 如例8.1(水稻N肥试验),5个处理(ABCDE)具有SSt=301.2,dft=4,可将其进一步分解:ABCD vs E df1=1,SS1=198.45;AB vs CD df2=1,SS2=72.25 A vs B df3=1,SS3=12.5;C vs D df4=1,SS4=18.04 回归和相关分析回归和相关分析4.1 一元线性回归分析一元线性回归分析 对于双变数资料的回归分析,主要有三项任务:1)建立 Y 依 X 的量化关系,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 统计分析 初级 统计 回归 分析 顾世梁
限制150内