概率论及数理统计方差分析与回归分析.ppt
《概率论及数理统计方差分析与回归分析.ppt》由会员分享,可在线阅读,更多相关《概率论及数理统计方差分析与回归分析.ppt(119页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第2 2页页8.1 方差分析8.1.1 问题的提出 实际工作中我们经常碰到多个正态总体均值的比较问题,处理这类问题通常采用所谓的方差分析方法。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第3 3页页例8.1.1 在饲料养鸡增肥的研究中,某研究所提出三种饲料配方:A1是以鱼粉为主的饲料,A2是以槐树粉为主的饲料,A3是以苜蓿粉为主的饲料。为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量。试验结果如下表所示
2、:第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第4 4页页表表8.1.18.1.1 鸡饲料试验数据鸡饲料试验数据 饲料A鸡重(克)A110731009106010011002101210091028A21107109299011091090107411221001A310931029108010211022103210291048第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第5 5页页本例中,我们要比较的是三种饲料对鸡的增肥作用是否相同。为此,把饲料称为因子,记为A,三种不同的配方称为因子A的三
3、个水平水平,记为A1,A2,A3,使用配方Ai下第j 只鸡60天后的重量用yij表示,i=1,2,3,j=1,2,10。我们的目的是比较三种饲料配方下鸡的平均重量是否相等,为此,需要做一些基本假定,把所研究的问题归结为一个统计问题,然后用方差分析的方法进行解决。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第6 6页页8.1.2 单因子方差分析的统计模型 在例8.1.1中我们只考察了一个因子,称其为单因子试验。通常,在单因子试验中,记因子为A,设其有r个水平,记为A1,A2,Ar,在每一水平下考察的指标可以看成一个总体,现有r 个水平,故有r 个
4、总体,假定:第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第7 7页页1)每一总体均为正态总体,记为N(i,i 2),i1,2,r;2)各总体的方差相同:1 2=22=r2=2;3)从每一总体中抽取的样本是相互独立的,即所有的试验结果yij 都相互独立。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第8 8页页我们要比较各水平下的均值是否相同,即要对如下的一个假设进行检验:H0:1=2=r(8.1.1)备择假设为H1:1,2,r不全相等在不会引起误解的情况下,H1通常可省略不写。如果H0成立,因子A
5、的r个水平均值相同,称因子A的r个水平间没有显著差异,简称因子A不显著;反之,当H0不成立时,因子A的r个水平均值不全相同,这时称因子A的不同水平间有显著差异,简称因子A显著。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第9 9页页为对假设(8.1.1)进行检验,需要从每一水平下的总体抽取样本,设从第i个水平下的总体获得m个试验结果,记yij 表示第i个总体的第j次重复试验结果。共得如下n=rm个试验结果:yij,i1,2,r,j1,2,m,其中r为水平数,m为重复数,i为水平编号,j 为重复编号。第九章第九章 方差分析与回归分析方差分析与回归
6、分析 11/12/202211/12/2022第第1010页页在水平Ai下的试验结果yij与该水平下的指标均值i 一般总是有差距的,记ij=yiji,ij 称为随机误差。于是有 yij=i+ij (8.1.2)(8.1.2)式称为试验结果yij 的数据结构式。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第1111页页单因子方差分析的统计模型:(8.1.3)总均值与效应:称诸i 的平均为总均值.称第i 水平下的均值i 与总均值 的差:ai=i-为Ai 的效应。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/20
7、22第第1212页页模型(8.1.3)可以改写为(8.1.8)假设(8.1.1)可改写为H0:a1=a2=ar=0(8.1.9)第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第1313页页8.1.3 平方和分解 一、试验数据通常在单因子方差分析中可将试验数据列成如下页表格形式。表8.1.2中的最后二列的和与平均的含义如下:第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第1414页页表表8.1.28.1.2 单因子方差分析试验数据单因子方差分析试验数据 因子水平试验数据和平均A1y11 y12 y1m
8、 T1A2y21 y22 y2mT2Aryr1 yr2 yrmTrT第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第1515页页数据间是有差异的。数据yij与总平均间的偏差可用yij表示,它可分解为二个偏差之和(8.1.10)记二、组内偏差与组间偏差第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第1616页页由于(8.1.11)所以yij-仅反映组内数据与组内平均的随机误差,称为组内偏差;而(8.1.12)除了反映随机误差外,还反映了第i个水平的效应,称为组间偏差。第九章第九章 方差分析与回归分析方
9、差分析与回归分析 11/12/202211/12/2022第第1717页页在统计学中,把k个数据y1,y2,yk分别对其均值=(y1+yk)/k 的偏差平方和称为k个数据的偏差平方和,它常用来度量若干个数据分散的程度。三、偏差平方和及其自由度第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第1818页页在构成偏差平方和Q的k个偏差y1,yk 间有一个恒等式,这说明在Q中独立的偏差只有k1个。在统计学中把平方和中独立偏差个数称为该平方和的自由度,常记为f,如Q的自由度为fQ=k1。自由度是偏差平方和的一个重要参数。第九章第九章 方差分析与回归分析方差
10、分析与回归分析 11/12/202211/12/2022第第1919页页各yij间总的差异大小可用总偏差平方和表示,其自由度为fT=n1;四、总平方和分解公式仅由随机误差引起的数据间的差异可以用组内偏差平方和表示,也称为误差偏差平方和,其自由度为fe=nr;第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第2020页页由于组间差异除了随机误差外,还反映了效应间的差异,故由效应不同引起的数据差异可用组间偏差平方和表示,也称为因子A的偏差平方和,其自由度为fA=r1;第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2
11、022第第2121页页定理8.1.1在上述符号下,总平方和ST可以分解为因子平方和SA与误差平方和Se之和,其自由度也有相应分解公式,具体为:ST=SA+Se,fT=fA+fe(8.1.16)(8.1.16)式通常称为总平方和分解式。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第2222页页偏差平方和Q的大小与自由度有关,为了便于在偏差平方和间进行比较,统计上引入了均方和的概念,它定义为MS=Q/fQ,其意为平均每个自由度上有多少平方和,它比较好地度量了一组数据的离散程度。如今要对因子平方和SA 与误差平方和Se 之间进行比较,用其均方和MSA
12、=SA/fA,MSe=Se/fe 进行比较更为合理,故可用作为检验H0的统计量。8.1.4检验方法第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第2323页页定理8.1.2在单因子方差分析模型(8.1.8)及前述符号下,有(1)Se/22(nr),从而E(Se)(nr)2,进一步,若H0成立,则有SA/22(r1)(2)SA与Se独立。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第2424页页由定理8.1.2,若H0成立,则检验统计量F服从自由度为fA和fe的F分布,因此拒绝域为W=FF1(fA,
13、fe),通常将上述计算过程列成一张表格,称为方差分析表。表8.1.3单因子方差分析表来源平方和 自由度均方和F比因子SAfA=r1MSA=SA/fAFMSA/MSe误差Sefe=nrMSe=Se/fe总和STfT=n1第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第2525页页对给定的,可作如下判断:若F F1(fA,fe),则说明因子A不显著。该检验的p值也可利用统计软件求出,若以Y记服从F(fA,fe)的随机变量,则检验的p 值为p=P(YF)。如果F F1(fA,fe),则认为因子A显著;第九章第九章 方差分析与回归分析方差分析与回归分析
14、11/12/202211/12/2022第第2626页页常用的各偏差平方和的计算公式如下:(8.1.19)一般可将计算过程列表进行。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第2727页页例8.1.2采用例8.1.1的数据,将原始数据减去1000,列表给出计算过程:表8.1.4例8.1.2的计算表水平数据(原始数据-1000)TiTi2A17396012129281943763610024A210792-101099074122158534222560355A393298021223229483541253162098411335051779
15、1363第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第2828页页利用(8.1.19),可算得各偏差平方和为:把上述诸平方和及其自由度填入方差分析表第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第2929页页表8.1.5例8.1.2的方差分析表来源平方和自由度均方和F比因子9660.083324830.04173.5948误差28215.9584211343.6171总和37876.041723若取=0.05,则F0.95(2,21)=3.47,由于F=3.59483.47,故认为因子A(饲料)是
16、显著的,即三种饲料对鸡的增肥作用有明显的差别。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第3030页页8.1.5参数估计 在检验结果为显著时,我们可进一步求出总均值、各主效应ai和误差方差 2的估计。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第3131页页一、点估计由模型(8.1.8)知诸yij相互独立,且yijN(+ai,2),因此,可使用极大似然方法求出一般平均、各主效应ai和误差方差 2的估计:由极大似然估计的不变性,各水平均值i的极大似然估计为,由于不是 2的无偏估计,可修偏:第九章
17、第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第3232页页由于,可给出Ai的水平均值i的1-的置信区间为其中。二、置信区间第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第3333页页例8.1.3继续例8.1.2,此处我们给出诸水平均值的估计。因子A的三个水平均值的估计分别为从点估计来看,水平2(以槐树粉为主的饲料)是最优的。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第3434页页误差方差的无偏估计为利用(8.1.23)可以给出诸水平均值的置信区间。此处
18、,若取0.05,则t1-/2(fe)=t0.95(21)=2.0796,于是三个水平均值的0.95置信区间分别为第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第3535页页在单因子试验的数据分析中可得到如下三个结果:因子是否显著;试验的误差方差 2的估计;诸水平均值i的点估计与区间估计。在因子A显著时,通常只需对较优的水平均值作参数估计,在因子A不显著场合,参数估计无需进行。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第3636页页8.1.6重复数不等情形单因子方差分析并不要求每个水平下重复试验次
19、数全相等,在重复数不等场合的方差分析与重复数相等情况下的方差分析极为相似,只在几处略有差别。数据:设从第i个水平下的总体获得mi个试验结果,记为yi1,yi2,yim,i=1,2,r,统计模型为:(8.1.24)第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第3737页页总均值:诸i的加权平均(所有试验结果的均值的平均)(8.1.25)称为总均值或一般平均。效应约束条件:各平方和的计算:SA的计算公式略有不同第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第3838页页例8.1.4某食品公司对一种食品
20、设计了四种新包装。为考察哪种包装最受顾客欢迎,选了10个地段繁华程度相似、规模相近的商店做试验,其中二种包装各指定两个商店销售,另二个包装各指定三个商店销售。在试验期内各店货架排放的位置、空间都相同,营业员的促销方法也基本相同,经过一段时间,记录其销售量数据,列于表8.1.6左半边,其相应的计算结果列于右侧。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第3939页页表表8.1.68.1.6销售量数据及计算表销售量数据及计算表 包装类型销售量miTiTi2/miA112 18230450468A214 12 13339507509A319 17
21、2135710831091A424 3025414581476和n=10T=180第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第4040页页由此可求得各类偏差平方和如下方差分析表如表8.1.8所示.若取0.01,查表得F0.01(3,6)=9.78,由于F=11.229.78,故我们可认为各水平间有显著差异。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第4141页页表表8.1.78.1.7例例8.1.48.1.4的方差分析表的方差分析表 来源平方和自由度均方和F比因子A25838611.22误差
22、e4667.67总和T3049第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第4242页页由于因子显著,我们还可以给出诸水平均值的估计。因子A的四个水平均值的估计分别为由此可见,第四种包装方式效果最好。误差方差的无偏估计为第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第4343页页进一步,利用(8.1.23)也可以给出诸水平均值的置信区间,只是在这里要用不同的mi代替那里相同的m。此处,若取0.05,则t1-/2(fe)=t0.95(6)=2.4469,于是效果较好的第三和第四个水平均值的0.95置
23、信区间分别为第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第4444页页8.2 多重比较 8.2.1效应差的置信区间如果方差分析的结果因子A显著,则等于说有充分理由认为因子A各水平的效应不全相同,但这并不是说它们中一定没有相同的。就指定的一对水平Ai与Aj,我们可通过求i-j的区间估计来进行比较。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第4545页页由于,故由此给出i-j的置信水平为1-的置信区间为(8.2.1)其中是 2的无偏估计。这里的置信区间与第六章中的两样本的t区间基本一致,区别在于这
24、里 2的估计使用了全部样本而不仅仅是两个水平Ai,Aj下的观测值。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第4646页页例8.2.1 继续例8.1.2,fe=21,取0.05,则t1-/2(fe)=t0.975(21)=2.0796,于是可算出各个置信区间为可见第一个区间在0的左边,所以我们可以概率95%断言认为1 小于2,其它二个区间包含0点,虽然从点估计角度看水平均值估计有差别,但这种差异在0.05水平上是不显著的。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第4747页页8.2.2多重
25、比较问题对每一组(i,j),(8.2.1)给出的区间的置信水平都是1,但对多个这样的区间,要求其同时成立,其联合置信水平就不再是1 了。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/12/2022第第4848页页譬如,设E1,Ek是k个随机事件,且有P(Ei)=1,i=1,k,则其同时发生的概率这说明它们同时发生的概率可能比1 小很多。为了使它们同时发生的概率不低于1,一个办法是把每个事件发生的概率提高到1/k.这将导致每个置信区间过长,联合置信区间的精度很差,一般人们不采用这种方法。第九章第九章 方差分析与回归分析方差分析与回归分析 11/12/202211/
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率 论及 数理统计 方差分析 回归 分析
限制150内