《MATLAB矩阵分析》PPT课件.ppt
《《MATLAB矩阵分析》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《MATLAB矩阵分析》PPT课件.ppt(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第3章章 MATLAB矩阵分析与处理矩阵分析与处理3.1 特殊矩阵特殊矩阵3.2 矩阵结构变换矩阵结构变换3.3 矩阵求逆与线性方程组求解矩阵求逆与线性方程组求解3.4 矩阵求值矩阵求值3.5 矩阵的特征值与特征向量矩阵的特征值与特征向量3.6 矩阵的超越函数矩阵的超越函数函 数说 明zeros产生元素全为0的矩阵ones产生元素全为1的矩阵eye产生单位矩阵rand产生均匀分布的随机数矩阵,数值范围(0,1)randn产生均值为0,方差为1的正态分布随机数矩阵diag获取矩阵的对角线元素,也可生成对角矩阵tril产生下三角矩阵triu产生上三角矩阵pascal产生帕斯卡矩阵magic产生幻
2、方阵3.1 特殊矩阵特殊矩阵3.1.1 通用的特殊矩阵通用的特殊矩阵常用的产生通用特殊矩阵的函数有:常用的产生通用特殊矩阵的函数有:zeros:产生全:产生全0矩阵矩阵(零矩阵零矩阵)。ones:产生全:产生全1矩阵矩阵(幺矩阵幺矩阵)。eye:产生单位矩阵。:产生单位矩阵。rand:产生:产生01间均匀分布的随机矩阵。间均匀分布的随机矩阵。randn:产生均值为:产生均值为0,方差为,方差为1的标准正态的标准正态分布随机矩阵。分布随机矩阵。例例3.1 分别建立分别建立33、32和与矩阵和与矩阵A同样大小的零矩同样大小的零矩阵。阵。(1)建立一个建立一个33零矩阵。零矩阵。zeros(3)(2
3、)建立一个建立一个32零矩阵。零矩阵。zeros(3,2)(3)设设A为为23矩阵,则可以用矩阵,则可以用zeros(size(A)建立建立一个与矩阵一个与矩阵A同样大小零矩阵。同样大小零矩阵。A=1 2 3;4 5 6;%产生一个产生一个23阶矩阵阶矩阵Azeros(size(A)%产生一个与矩阵产生一个与矩阵A同样大小的同样大小的零矩阵零矩阵例例3.2 建立随机矩阵:建立随机矩阵:(1)在区间在区间20,50内均匀分布的内均匀分布的5阶随机矩阵。阶随机矩阵。(2)均值为、方差为的均值为、方差为的5阶正态分布随机矩阵。阶正态分布随机矩阵。命令如下:命令如下:x=20+(50-20)*rand
4、(5)y=0.6+sqrt(0.1)*randn(5)此外,常用的函数还有此外,常用的函数还有reshape(A,m,n),它在矩阵,它在矩阵总元素保持不变的前提下,将矩阵总元素保持不变的前提下,将矩阵A重新排成重新排成mn的二维矩阵。的二维矩阵。3.1.2 用于专门学科的特殊矩阵用于专门学科的特殊矩阵(1)魔方矩阵魔方矩阵魔方矩阵有一个有趣的性质,其每行、每魔方矩阵有一个有趣的性质,其每行、每列及两条对角线上的元素和都相等。对于列及两条对角线上的元素和都相等。对于n阶魔方阵,其元素由阶魔方阵,其元素由1,2,3,n2共共n2个整数个整数组成。组成。MATLAB提供了求魔方矩阵的函数提供了求魔
5、方矩阵的函数magic(n),其功能是生成一个,其功能是生成一个n阶魔方阵。阶魔方阵。例:矩阵生成函数示例 A=magic(3)A=8 1 6 3 5 7 (15)4 9 2 A=magic(4)A=16 2 3 13 5 11 10 8 (34)9 7 6 12 4 14 15 1例例3.3 将将101125等等25个数填入一个个数填入一个5行行5列的列的表格中,使其每行每列及对角线的和均为表格中,使其每行每列及对角线的和均为565。M=100+magic(5)(2)范得蒙矩阵范得蒙矩阵范得蒙范得蒙(Vandermonde)矩阵最后一列全为矩阵最后一列全为1,倒数第二列为一个指定的向量,其他
6、各,倒数第二列为一个指定的向量,其他各列是其后列与倒数第二列的点乘积。可以列是其后列与倒数第二列的点乘积。可以用一个指定向量生成一个范得蒙矩阵。在用一个指定向量生成一个范得蒙矩阵。在MATLAB中,函数中,函数vander(V)生成以向量生成以向量V为基础向量的范得蒙矩阵。例如,为基础向量的范得蒙矩阵。例如,A=vander(1;2;3;5)即可得到上述范得蒙矩即可得到上述范得蒙矩阵。阵。(3)希尔伯特矩阵希尔伯特矩阵p41在在MATLAB中,生成希尔伯特矩阵的函数中,生成希尔伯特矩阵的函数是是hilb(n)。使用一般方法求逆会因为原始数据的微小使用一般方法求逆会因为原始数据的微小扰动而产生不
7、可靠的计算结果。扰动而产生不可靠的计算结果。MATLAB中,有一个专门求希尔伯特矩阵的逆的函中,有一个专门求希尔伯特矩阵的逆的函数数invhilb(n),其功能是求,其功能是求n阶的希尔伯特矩阶的希尔伯特矩阵的逆矩阵。阵的逆矩阵。例例3.4 求求4阶希尔伯特矩阵及其逆矩阵。阶希尔伯特矩阵及其逆矩阵。命令如下:命令如下:format rat%以有理形式输出以有理形式输出H=hilb(4)H=invhilb(4)(4)托普利兹矩阵托普利兹矩阵托普利兹托普利兹(Toeplitz)矩阵除第一行第一列矩阵除第一行第一列外,其他每个元素都与左上角的元素相同。外,其他每个元素都与左上角的元素相同。生成托普利
8、兹矩阵的函数是生成托普利兹矩阵的函数是toeplitz(x,y),它生成一个以它生成一个以x为第一列,为第一列,y为第一行的托为第一行的托普利兹矩阵。这里普利兹矩阵。这里x,y均为向量,两者不必均为向量,两者不必等长。等长。toeplitz(x)用向量用向量x生成一个对称的托生成一个对称的托普利兹矩阵。例如普利兹矩阵。例如T=toeplitz(1:6)(5)伴随矩阵伴随矩阵MATLAB生成伴随矩阵的函数是生成伴随矩阵的函数是compan(p),其中,其中p是一个多项式的系数向量,高次幂是一个多项式的系数向量,高次幂系数排在前,低次幂排在后。例如,为了系数排在前,低次幂排在后。例如,为了求多项式
9、的求多项式的x3-7x+6的伴随矩阵,可使用命的伴随矩阵,可使用命令:令:p=1,0,-7,6;compan(p)(6)帕斯卡矩阵帕斯卡矩阵我们知道,二次项我们知道,二次项(x+y)n展开后的系数随展开后的系数随n的增大组成一个三角形表,称为杨辉三角的增大组成一个三角形表,称为杨辉三角形。由杨辉三角形表组成的矩阵称为帕斯形。由杨辉三角形表组成的矩阵称为帕斯卡卡(Pascal)矩阵。函数矩阵。函数pascal(n)生成一个生成一个n阶帕斯卡矩阵。阶帕斯卡矩阵。杨辉三角是一个由数字排列成的三角形数表,一般形式如下:1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5
10、1 1 6 15 20 15 6 1.杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。例:矩阵生成函数示例A=pascal(3)ans=tril(A)ans=1 0 0 1 2 0 1 3 6 1 1 1 1 2 3 1 3 6diag(A)ans=1 2 6 diag(ans)ans=?例:矩阵生成函数示例A=pascal(3)ans=tril(A)ans=1 0 0 1 2 0 1 3 6 1 1 1 1 2 3 1 3 6diag(A)ans=1 2 6 diag(ans)ans=1 0 0 0 2 0 0 0 6例:矩阵生成函数示例A=pa
11、scal(3)ans=tril(A)ans=1 0 0 1 2 0 1 3 6 1 1 1 1 2 3 1 3 6diag(A)ans=1 2 6 diag(ans)diag(ans)ans=?ans=1 0 0 0 2 0 0 0 6例:矩阵生成函数示例A=pascal(3)ans=tril(A)ans=1 0 0 1 2 0 1 3 6 1 1 1 1 2 3 1 3 6diag(A)ans=1 2 6 diag(ans)diag(ans)ans=1 0 0 0 2 0 0 0 6ans=1 2 6例:矩阵生成函数示例A=pascal(3)ans=tril(A)ans=1 0 0 1 2
12、0 1 3 6 1 1 1 1 2 3 1 3 6diag(A)ans=1 2 6 diag(ans)diag(ans)ans=1 0 0 0 2 0 0 0 6ans=1 2 6diag(*)*是向量,则执行该指令生成对角矩阵*是矩阵,则执行该指令获取矩阵的对角线元素例例3.5 求求(x+y)5的展开式。的展开式。在在MATLAB命令窗口,输入命令:命令窗口,输入命令:pascal(6)矩阵次对角线上的元素矩阵次对角线上的元素1,5,10,10,5,1即为展即为展开式的系数。开式的系数。3.2 矩阵结构调整变换矩阵结构调整变换3.2.1 对角阵与三角阵对角阵与三角阵1对角阵对角阵只有对角线上
13、有非只有对角线上有非0元素的矩阵称为对角矩元素的矩阵称为对角矩阵,对角线上的元素相等的对角矩阵称为阵,对角线上的元素相等的对角矩阵称为数量矩阵,对角线上的元素都为数量矩阵,对角线上的元素都为1的对角矩的对角矩阵称为单位矩阵。阵称为单位矩阵。(1)提取矩阵的对角线元素提取矩阵的对角线元素设设A为为mn矩阵,矩阵,diag(A)函数用于提取矩阵函数用于提取矩阵A主对角线元主对角线元素,产生一个具有素,产生一个具有min(m,n)个元素的列向量。个元素的列向量。diag(A)函数还有一种形式函数还有一种形式diag(A,k),其功能是提取第,其功能是提取第k条条对角线的元素。对角线的元素。(2)构造
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- MATLAB矩阵分析 MATLAB 矩阵 分析 PPT 课件
限制150内