工程弹塑性力学-第一章.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《工程弹塑性力学-第一章.ppt》由会员分享,可在线阅读,更多相关《工程弹塑性力学-第一章.ppt(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、工程弹塑性力学工程弹塑性力学浙江大学浙江大学 建筑工程学院建筑工程学院绪论0.1 课程研究对象、研究任务课程研究对象、研究任务0.2 基本假定基本假定0.3 几个基本概念几个基本概念0.4 参考书目参考书目0.1 弹塑性力学的研究对象和任务弹塑性力学的研究对象和任务弹塑性力学弹塑性力学:研究可变形固体受到外荷载、温度研究可变形固体受到外荷载、温度变化及边界约束变动等作用时、弹变化及边界约束变动等作用时、弹塑性变形和应力状态的科学。塑性变形和应力状态的科学。固体力学的一个分支学科固体力学的一个分支学科研究对象研究对象:对实体结构、板壳结构、杆件的进对实体结构、板壳结构、杆件的进一步分析。一步分析
2、。PPP研究方法研究方法:材料力学、结构力学材料力学、结构力学:简化的数学模型简化的数学模型研究任务研究任务:弹塑性力学弹塑性力学:较精确的数学模型较精确的数学模型建立并给出用材料力学、结构力学方建立并给出用材料力学、结构力学方法无法求解的问题的理论和方法。法无法求解的问题的理论和方法。给出初等理论可靠性与精确度的度量。给出初等理论可靠性与精确度的度量。学习目的学习目的:确定一般工程结构的弹塑性变形与内确定一般工程结构的弹塑性变形与内力的分布规律。力的分布规律。确定一般工程结构的承载能力。确定一般工程结构的承载能力。为研究一般工程结构的强度、振动、为研究一般工程结构的强度、振动、稳定性打下理论
3、基础。稳定性打下理论基础。0.2 基本假定基本假定1).1).假定固体材料是连续介质假定固体材料是连续介质连续性假定连续性假定2).2).物体为均匀的物体为均匀的各向同性各向同性的的3).3).物体的变形属于物体的变形属于小变形小变形4).4).物体原来是处于一种物体原来是处于一种无应力无应力的自然状态的自然状态0.3 几个基本概念几个基本概念张量的概念张量的概念只需指明其大小即足以被说明的物理量,称为标量标量温度、质量、力所做的功除指明其大小还应指出其方向的物理量,称为矢量矢量物体的速度、加速度在讨论力学问题时,仅引进标量和矢量的概念是不够不够的如应力状态、应变状态、惯性矩、弹性模量等张量张
4、量关于三维空间,描述一切物理恒量的分量数目可统一地表示成:M=rn=3n标量标量:n=0,:n=0,零阶张量零阶张量矢量矢量:n=1,:n=1,一阶张量一阶张量应力应力,应变等应变等:n=2,:n=2,二阶张量二阶张量二阶以上的张量已不可能在三维空间有明显直观的几何意义。0.3 几个基本概念几个基本概念为了书写上的方便,在张量的记法中,都采用下标字母符号来表示和区别该张量的所有分量。这种表示张量的方法,就称为下标记号法下标记号法。下标记号法下标记号法:不重复出现的下标符号,在其变程N(关于三维空间N3)内分别取数1,2,3,N重复出现的下标符号称为哑标号,取其变程N内所有分量,然后再求和,也即
5、先罗列所有各分量,然后再求和。自由标号自由标号:哑标号哑标号:0.3 几个基本概念几个基本概念当一个下标符号在一项中出现两次时,这个下标符号应理解为取其变程N中所有的值然后求和,这就叫做求和约定求和约定。求和约定求和约定:d dij记号记号:Kroneker-delta记号记号0.3 几个基本概念几个基本概念凡是同阶的两个或两个以上的张量可以相加(减),并得到同阶的一个新张量,法则为:张量的计算张量的计算:1、张量的加减第一个张量中的每一个分量乘以第二个张量中的每一个分量,从而得到一个新的分量的集合新张量,新张量的阶数等于因子张量的阶数之和。2、张量的乘法张量导数就是把张量的每个分量都对坐标参
6、数求导数。3、张量函数的求导0.4 主要参考书目主要参考书目Foundations of Solid Mechanics1、(冯元桢)2、杨桂通3、徐秉业A first course in continuum mechanics 固体力学导论固体力学导论连续介质力学导论连续介质力学导论弹塑性力学弹塑性力学应用弹塑性力学应用弹塑性力学第一章第一章 弹塑性力学基础弹塑性力学基础1.1 应力张量应力张量1.2 偏量应力张量偏量应力张量1.3 应变张量应变张量1.4 应变速率张量应变速率张量1.5 应力、应变应力、应变 Lode参数参数1.1 应力张量力学的语言力学的语言yxzO正应力正应力正应力正应
7、力剪应力剪应力剪应力剪应力过过C点可以做无点可以做无穷多个平面穷多个平面K不同的面上的应不同的面上的应力是不同的力是不同的到底如何描绘一到底如何描绘一点处的应力状态点处的应力状态?1).1).一点的应力状态一点的应力状态一点的应力状态一点的应力状态yxzOtyxtyzsytyxtyzsytzxtzysztxytxzsxtxytxzsxtzxtzyszPABC1.1 应力张量一点的应力状态一点的应力状态可由过该点的微小可由过该点的微小正平行六面体上的应力分量来确定。正平行六面体上的应力分量来确定。应力张量应力张量数学上,在坐标变换时,服从一数学上,在坐标变换时,服从一定坐标变换式的九个数所定义的
8、定坐标变换式的九个数所定义的量叫做量叫做二阶张量二阶张量二阶张量二阶张量。用张量下标记号法下标下标1、2、3表示坐标表示坐标x1、x2、x3即即x、y、z方向方向(1.1)(1.2)1.1 应力张量2).2).一点斜面上的应力一点斜面上的应力(不计体力不计体力)i:自由下标;j为求和下标(同一项中重复出现)。斜截面外法线斜截面外法线n n的方向余弦的方向余弦:令斜截面令斜截面ABCABC的面积为的面积为1 1(1.3)(1.4)1.1 应力张量斜截面斜截面OABC上的正应力上的正应力:斜截面斜截面OABC上的剪应力上的剪应力:(1.5)(1.6)1.1 应力张量3).3).主应力及其不变量主应
9、力及其不变量主平面主平面:剪应力等于零的截面剪应力等于零的截面主应力主应力-:主平面上的正应力主平面上的正应力代入代入采用张量下标记号采用张量下标记号Kroneker delta记号(1.7)(1.8)(1.9)1.1 应力张量d dij记号:记号:Kroneker-delta记号记号方向余弦满足条件:方向余弦满足条件:采用张量表示采用张量表示联合求解联合求解 l1,l2,l3:l1,l2,l3不全等于不全等于0 0(1.10)(1.11)(1.12)(1.13)1.1 应力张量联合求解联合求解 l1,l2,l3:行列式展开后得:行列式展开后得:简化后得简化后得(1.14)(1.15)式中式中
10、:是关于是关于的三次方程,它的三个根,即为三个主的三次方程,它的三个根,即为三个主应力,其相应的三组方向余弦对应于三组主平面。应力,其相应的三组方向余弦对应于三组主平面。主应力大小与坐标选择无关,故主应力大小与坐标选择无关,故J J1 1,J,J2 2,J,J3 3也必与坐标选择无关。也必与坐标选择无关。1.1 应力张量若坐标轴选择恰与三个主坐标重合:若坐标轴选择恰与三个主坐标重合:(1.16)主剪应力面:平分两主平面夹角的平面,数值为:主剪应力面:平分两主平面夹角的平面,数值为:(1.17)主剪应力面主剪应力面(t t1)213t1213t11.1 应力张量最大最小剪应力:最大最小剪应力:取
11、取主方向为坐标轴取向主方向为坐标轴取向,则一点处任一截面上的剪应力的计算式则一点处任一截面上的剪应力的计算式:消去消去l3:由极值条件由极值条件1.1 应力张量最大最小剪应力:最大最小剪应力:第一组解:第一组解:第二组解:第二组解:第三组解:第三组解:它们分别作用在它们分别作用在与相应主方向成与相应主方向成4545的斜截面上的斜截面上因为:因为:1.1 应力张量4).4).八面体上的应力八面体上的应力s s1s s2s s3沿主应力方向取坐标轴,与坐标轴等倾角的沿主应力方向取坐标轴,与坐标轴等倾角的八个面组成的图形,称为八个面组成的图形,称为八面体八面体。(1.19)八面体的法线方向余弦:八面
12、体的法线方向余弦:八面体平面上应力在三个坐标轴上的投影分别为:八面体平面上应力在三个坐标轴上的投影分别为:八面体(每个坐标象限1个面)或或(1.20)1.1 应力张量4).4).八面体上的应力八面体上的应力s s1s s2s s3八面体面上的正应力为八面体面上的正应力为:八面体面上的剪应力为:八面体面上的剪应力为:八面体(每个坐标象限1个面)(1.23)(1.21)八面体面上的应力矢量为:八面体面上的应力矢量为:(1.22)平均正应力平均正应力1.1 应力张量例题例题:已知一点的应力状态由以下一组应力分量所确定已知一点的应力状态由以下一组应力分量所确定,即即 x3,y0,z0,xy1,yz 2
13、,zx 1,应力单位为应力单位为MPa。试求该点的主应力值。试求该点的主应力值。代入式(1.14)后得:解解:解得主应力为解得主应力为:1.2 应力偏量张量1).1).应力张量分解应力张量分解物体的变形物体的变形(1.32)体积改变体积改变形状改变形状改变由各向相等的应力状态引起的由各向相等的应力状态引起的材料晶格间的移动引起的材料晶格间的移动引起的球应力状态球应力状态/静水压力静水压力弹性性质弹性性质塑性性质塑性性质球形应力张量球形应力张量偏量应力张量偏量应力张量1.2 应力偏量张量1).1).应力张量分解应力张量分解(1.31)球形应力张量球形应力张量偏量应力张量偏量应力张量其中其中:平均
14、正应力平均正应力/静水压力静水压力1.2 应力偏量张量2).2).主偏量应力和不变量主偏量应力和不变量(1.31)二阶对称张量二阶对称张量其中其中:剪应力分量始剪应力分量始终没有变化终没有变化主偏量应力主偏量应力(1.33)1.2 应力偏量张量证明偏应力状态证明偏应力状态证明偏应力状态证明偏应力状态 的主方向与原应力状态的主方向与原应力状态的主方向与原应力状态的主方向与原应力状态 的主方向重合的主方向重合的主方向重合的主方向重合例例:设原应力状态 主方向的方向余弦为l1,l2,l3,则由式(1.9)得证明:证明:显然,方向余弦l1,l2,l3将由式(a)中的任意两式和l12+l22+l32=1
15、所确定。(a)若设偏应力状态 主方向的方向余弦为l1,l2,l3,则由式(1.9)同样得:显然,方向余弦l1,l2,l3将由式(b)中的任意两式和l12+l22+l3 2=1所确定。(b)由于:l1=l1;l2=l2;l3=l3 可见式(a)与式(b)具有相同的系数,且已知l12+l22+l32=l12+l22+l3 2=11.2 应力偏量张量2).2).主偏量应力和不变量主偏量应力和不变量(1.33)偏应力状态偏应力状态偏应力状态偏应力状态 的主方向与原应力状态的主方向与原应力状态的主方向与原应力状态的主方向与原应力状态 的主方向一致的主方向一致的主方向一致的主方向一致,主值为主值为主值为主
16、值为:满足三次代数方程式:满足三次代数方程式:(1.34)式中式中J1,J2,J3为不变量为不变量(1.35)1.2 应力偏量张量(1.40)利用利用J1=0,不变量不变量J2还可写为还可写为:(1.38)1.2 应力偏量张量(1.43)3).3).等效应力等效应力(应力强度应力强度)在弹塑性力学中,为了使用方便,将 乘以系数 后,称之为等效应力等效应力(1.41)简单拉伸时简单拉伸时:“等效等效”的命名由此而来。各正应力增加或减少一个平均应力,等效应力的数值不变,这也说明等效应力与球应力状态无关1.2 应力偏量张量(1.42)4).4).等效剪应力等效剪应力(剪应力强度剪应力强度)“等效等效
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 塑性 力学 第一章
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内