电力系统继电保护 教学课件 韩笑 第五章.ppt
《电力系统继电保护 教学课件 韩笑 第五章.ppt》由会员分享,可在线阅读,更多相关《电力系统继电保护 教学课件 韩笑 第五章.ppt(186页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、电力系统继电保护 教学课件 韩笑 第五章 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望5.1 变压器保护第第5章章 元件保护元件保护5.3母线保护简介母线保护简介 5.2同步发电机保护同步发电机保护 5.4断路器失灵保护简介断路器失灵保护简介 11/13/20222第5章 元件保护5.1.1变压器的故障与保护配置 变压器的故障类型油箱内部故障:绕组匝间,绕组相间,中性点接地侧的接地短路。油箱外部故障:套管和引出线上发生的相间短路和接地短路。5.1 变压器保护11
2、/13/20223第5章 元件保护变压器的不正常工作情况外部短路引起的过电流;外部短路引起的中性点过压;过负荷;油面降低;油温升高;过励磁。11/13/20224第5章 元件保护变压器应装设的继电保护装置一般装设以下保护:1.瓦斯保护 2.纵差动保护或电流速断保护3.相间后备保护4.接地后备保护5.过负荷保护6.过励磁保护7.其他保护,如冷却器故障、压力释放等11/13/20225第5章 元件保护瓦斯保护瓦斯保护是变压器的主保护之一。瓦斯保护的主要元件是瓦斯(气体)继电器,安装位置在油箱与油枕的连接导管中。5.1.2 变压器的瓦斯保护 瓦斯继电器油枕11/13/20226第5章 元件保护下开口
3、杯 上开口杯 干簧触点 干簧触点 平衡锤 放气阀 探针 支架 挡板 进油挡板 永久磁铁 永久磁铁 FJ3-80型气体继电器的结构图 11/13/20227第5章 元件保护QJ1-80型气体继电器结构图 罩 顶针 气塞 磁铁 开口杯 重锤 探针 开口销 弹簧 挡板 磁铁 螺杆 干簧触点 调节杆 干簧触点 套管 排气口 11/13/20228第5章 元件保护轻瓦斯动作于信号轻瓦斯动作后应检查变压器油样,判别故障类型、程度重瓦斯动作于跳闸,同时发出信号通常气体容积的整定范围为250300CM3 一般油流流速整定范围为0.61.5m/s 11/13/20229第5章 元件保护 瓦斯保护的主要优点是结构
4、简单,灵敏性高,能反应变压器油箱内的各种故障。特别是能反应轻微匝间短路。它也是油箱漏油或绕组、铁芯烧损的唯一保护。瓦斯保护不能反应变压器套管和引出线的故障,需与纵差动保护一起作为变压器的主保护。11/13/202210第5章 元件保护5.1.3 变压器的差动保护KD 变压器纵差动保护与输电线路纵联差动保护的基本原理相同。TA2TA1一、变压器纵差动保护的原理 核心问题仍是不平衡电流问题11/13/202211第5章 元件保护5.1.4变压器纵差动保护不平衡电流产生的原因分析不平衡电流形成原因计算不平衡电流大小整定差动保护动作值躲过不平衡电流影响减小不平衡电流采取技术措施降低动作值,提高灵敏度1
5、1/13/202212第5章 元件保护变压器差动保护不平衡电流产生的原因有:TA励磁特性不一致变压器各侧电流不同相TA变比标准化调整分接头励磁电流及励磁涌流差动保护共同问题变压器差动保护特殊问题11/13/202213第5章 元件保护TA励磁特性不一致TA励磁电流TA误差TA励磁电流差异差动保护不平衡电流不平衡电流经验公式同型系数TA误差10一次电流TA变比取1变压器差动保护特点为:TA同型系数取111/13/202214第5章 元件保护变压器各侧电流不同相 对于Y,d11型变压器,正常运行时d侧电流超前Y侧电流300,形成不平衡电流。方法1.“外转角”变压器Y侧电流互感器的二次绕组接成三角形
6、,d侧的三个电流互感器接成星形。对策:相位补偿在保护外将相位补偿过来将变压器各侧二次电流调整为同相11/13/202215第5章 元件保护cbaCBAKD1KD2KD3一次电流二次电流一次电流二次电流11/13/202216第5章 元件保护 一次电流纵差动保护电流相量图二次电流同相Y侧侧不同相11/13/202217第5章 元件保护采用相位补偿接线后,对于TA接成三角形的一侧,流入差动臂的电流增加了,应对该侧的TA变比进行修正。变压器星形侧电流互感器变比 变压器三角形侧电流互感器变比 11/13/202218第5章 元件保护方法2.“内转角”在保护内部采用软件算法进行相位补偿变压器各侧电流互感
7、器均接成星形。PST1200采用RCS978采用主变Y侧主变侧主变Y侧主变侧不变换11/13/202219第5章 元件保护!无论哪种相位补偿方式应保证差动电流中不含零序成分外部发生接地故障时,零序电流仅流过变压器高压侧,不去除零序电流则会产生差动电流,导致保护误动变压器高压侧发生接地故障时,尽管差动电流中不含零序电流,但由于有正序、负序故障电流,差动保护可以动作,灵敏度有所降低。为提高接地故障灵敏度,联络变可设专门的零序电流差动保护(简称零差)。11/13/202220第5章 元件保护TA变比标准化观察算例:11/13/202221第5章 元件保护TA变比标准化问题解决方法:老式电磁型差动继电
8、器(如BCH、DCD系列):使用平衡绕组Wbal,同时在整定时考虑fI1,f为平衡线圈选取误差,取0.05微机型变压器保护:软件算法中引入补偿系数平衡二次电流采样值电流二次回路串入自耦变流器,微调二次电流11/13/202222第5章 元件保护调整分接头变压器调整分接头时一侧额定电流改变,而另一侧电流不变,产生不平衡电流解决方法:计算变压器额定电流以中间的分接头为准,整定动作电流时考虑调压范围的一半。调压范围的一半最大外部故障电流11/13/202223第5章 元件保护励磁电流及励磁涌流励磁电流属于不平衡电流。励磁电流较小,210额定电流,整定时很容易躲过。变压器空载合闸或外部故障切除时,电压
9、突变,变压器产生励磁涌流,对差动保护影响很大。如何躲避励磁涌流影响,是研究变压器差动保护面临的主要难点之一。11/13/202224第5章 元件保护励磁涌流产生的原因根据能量守恒定律,铁芯中的磁通不能突变。+m-m suruperaperT/2Tt t,u变压器.m=2 m+surper+aper+surper周期分量稳态磁通aper非周期分量暂态磁通sur剩磁当电压突变时11/13/202225第5章 元件保护tt .mimiim tt.m半周波后磁通达到最大由于铁芯饱和电流激增im11/13/202226第5章 元件保护励磁涌流录波(空载合闸)11/13/202227第5章 元件保护必须研
10、究励磁涌流与短路电流的波形区别,利用电流波形识别励磁涌流,当发生励磁涌流时闭锁差动保护,防止误动。励磁涌流幅值可达5-10倍额定电流,与短路电流相当。励磁涌流随着磁通中非周期分量一起衰减,最后消失,励磁电流回到正常值,涌流衰减时间为秒级。差动保护以动作电流躲过,会导致内部故障拒动差动保护以动作时间躲过,故障切除时间过长11/13/202228第5章 元件保护励磁涌流的波形特点3.波形存在间断角。2.含有大量高次谐波,其中以二次谐波成分为主。1.含有较大的非周期分量;波形偏于时间轴一侧,严重不对称。11/13/202229第5章 元件保护防止励磁涌流引起纵差保护误动的措施2.波形不对称识别1.采
11、用带速饱和变流器的差动继电器BCH、DCD系列老式电磁型继电器,当差动电流中直流分量含量较高时自动提高动作电流(即具有“直流助磁”特性),防止保护误动。4.波形间断角鉴别微机保护可以识别差动电流的正负半周是否对称,当电流波形严重不对称时判为励磁涌流情况,闭锁差动保护。3.二次谐波闭锁(制动)差动电流中二次谐波含量较高时闭锁差动保护;或自动提高动作电流,二次谐波越大,动作电流提高越多。差动电流波形中间断角达到一定值(如600)以上时,闭锁差动保护。11/13/202230第5章 元件保护励磁涌流产生原因励磁涌流波形特点防止励磁涌流影响方法电压突变,磁通不能突变,产生暂态磁通,铁芯严重饱和,励磁电
12、流激增含有很大非周期分量,波形严重不对称含有较大二次谐波分量波形具有间断角直流助磁,识别波形不对称二次谐波闭锁(制动)间断角鉴别识别波形不对称空载合闸或外部故障切除时,11/13/202231第5章 元件保护不平衡电流产生原因TA励磁特性不一致变压器各侧电流不同相TA变比标准化调整分接头励磁电流及励磁涌流技术措施整定计算考虑比率制动相位补偿系数补偿(平衡线圈)0.051调压范围一半波形不对称识别二次谐波间断角综上所述,整定用平衡线圈匝数必须为整数引起的误差,微机保护可不考虑11/13/202232第5章 元件保护电磁型差动继电器以前苏联BCH系列(国产对应型号为DCD)为代表笨重、灵敏度低、内
13、部故障时延时较多、调试复杂共同特点:带有速饱和铁芯的变流器变流器:差动电流不直接流入继电器线圈,经过变流器可以滤除差动电流中非周期分量11/13/202233第5章 元件保护速饱和铁芯:变流器铁芯容易饱和。差动电流中非周期分量不能变换至二次侧,全部用于铁芯励磁,使铁芯迅速饱和。减小电流变送比,相当于提高动作电流。直流助磁特性:差动电流中直流分量较大时自动提高动作电流1o动作电流倍数直流分量含量11/13/202234第5章 元件保护直流助磁特性作用:躲避励磁涌流发生励磁涌流时,由于差动电流中直流分量较大,动作电流提高很多,躲过了励磁涌流。直流助磁特性缺点:发生内部故障时,由于短路初瞬直流分量可
14、能较大,动作电流提高很多,差动保护无法动作,要等到非周期分量衰减后、动作电流回落,保护才动作。11/13/202235第5章 元件保护BCH-2型继电器特点:带有短路线圈Wk短路线圈Wk使直流助磁曲线更陡,加强了躲避励磁涌流的能力。同时改变短路线圈Wk抽头位置,可以调节直流助磁特性。1o无短路线圈Wk为A1-A2B1-B2C1-C2D1-D2WKWK11/13/202236第5章 元件保护BCH系列继电器均带有2个平衡线圈Wbal平衡线圈Wbal串入二次电流较小的一侧,可以减小TA变比标准化形成的不平衡电流平衡线圈Wbal还可以与差动线圈串联、构成工作线圈,调整差动保护动作电流。BCH-1型继
15、电器均带有1组制动线圈Wbrk,动作电流具有制动特性,躲避外部故障穿越电流形成的不平衡电流能力较强。制动特性作用同线路纵联差动保护。BCH-4型继电器均带有4组制动线圈Wbrk,可用于三卷变压器。11/13/202237第5章 元件保护部件作用BCH-1BCH-2BCH-4速饱和铁芯变流器直流助磁特性,躲避励磁涌流差动线圈产生动作磁势(安匝)二次线圈驱动执行元件平衡线圈减小TA变比标准化形成的不平衡电流,改变动作电流2个2个2个短路线圈加强直流助磁特性,躲避励磁涌流无无制动线圈躲避外部故障穿越电流形成的不平衡电流1个无4个BCH系列继电器小结11/13/202238第5章 元件保护差动保护整定
16、方法与差动继电器(元件)类型有很大关系,各有特点。BCH-2型继电器构成差动保护整定步骤确定TA接线形式,变比,计算各侧二次额定电流确定差动保护动作电流(一次)计算值确定差动保护动作电流(二次)计算值确定差动继电器工作线圈匝数,二次动作电流确定差动继电器平衡线圈匝数,校验误差确定短路线圈匝数校验灵敏度按变压器容量选:容量大,直流助磁曲线应平缓些,选A1-A2或B1-B2;反之选C1-C2或D1-D2躲过TA二次断线、励磁涌流、外部故障电流影响11/13/202239第5章 元件保护5.1.5 主变差动保护实现关键点:采用比例制动技术提高躲避外部故障穿越性短路电流形成的不平衡电流利用二次谐波、波
17、形不对称等判据防止励磁涌流导致变压器差动保护误动11/13/202240第5章 元件保护比率制动问题比率制动为差动保护通常采用的技术措施,目的是克服外部故障穿越性电流形成的不平衡电流。第4章纵联保护中已经介绍了线路差动保护采用的比率制动特性。线路差动、变压器差动、发电机纵差(本章第2节)、母线差动(本章第3节)中采用的比率制动原理是一样的。目前几乎所有的线路、变压器、发电机、母线差动保护均具有比率制动特性。11/13/202241第5章 元件保护差动电流正常运行及外部故障时,内部故障时,动作条件:外部故障时不误动线路纵差变压器纵差共同的差动原理11/13/202242第5章 元件保护讨论外部故
18、障情况无比率制动时整定过程 有比率制动时整定过程动作区动作区11/13/202243第5章 元件保护制动特性:动作电流不是常数,与制动电流有关思路:取短路电流为制动量,当短路电流增加时,不平衡电流增大,但因为制动电流增加、动作电流提高,可以使动作电流始终高于不平衡电流,防止差动保护误动。各种比率制动方法区别在于制动电流的选取及制动特性曲线。11/13/202244第5章 元件保护以一个实例进行讨论,取某一侧电流为制动电流,特性为IactKbrk且IactIact.0。注意外部故障与内部故障情况下11/13/202245第5章 元件保护外部故障时,内部故障时,折线段动作特性灵敏度较低,很难满足要
19、求,实际应用较少11/13/202255第5章 元件保护过电流保护过电流保护11/13/202256第5章 元件保护低电压起动过电流保护低电压起动过电流保护保护原理U加设了电压元件,电流保护部分动作值较过电流保护低,灵敏度有所提高11/13/202257第5章 元件保护低电压起动过电流保护低电压起动过电流保护11/13/202258第5章 元件保护复合电压起动过电流保护复合电压起动过电流保护保护原理 电流保护部分与低电压起动过电流保护相同。电压部分由2部分组成:负序过电压,反应不对称故障单相式低电压,反应对称故障与低电压起动过电流保护相比,电流部分动作值、灵敏度一样;电压部分灵敏度提高11/1
20、3/202259第5章 元件保护复合电压起动过电流保护复合电压起动过电流保护11/13/202260第5章 元件保护负序电流保护负序电流保护对于大容量变压器,采用复合电压起动过电流保护,保护的灵敏系数可能不满足要求。可采用负序电流保护。该保护由两部分组成:负序电流部分:反应不对称故障;低电压起动过电流部分:反应对称故障。11/13/202261第5章 元件保护负序电流保护负序电流保护11/13/202262第5章 元件保护更大型的升压变压器和系统联络变压器还可采用低阻抗保护,类似Z过负荷保护过负荷保护过负荷时三相对称,过负荷保护只需反应某一相电流。过负荷保护经延时5-10s动作于信号。11/1
21、3/202263第5章 元件保护5.1.75.1.7变压器接地短路的后备保护变压器接地短路的后备保护 外部接地故障对变压器的危害:中性点接地变压器:过流中性点及高压侧绕组流过故障电流 中性点不接地变压器:中性点过压中性点对地电压为高压母线处零序电压11/13/202264第5章 元件保护除500kV、自耦变,变压器中性点可接地运行也可不接地运行。变压器中性点是否接地(运行方式)取决于:变压器中性点的绝缘水平 绝缘水平较低的变压器中性点必须接地运行 如500kV主变 变压器结构 如自耦变中性点必须接地运行电网结构 变压器中性点接地设置应保证接地故障时健全相电压不过压、零序电流水平适当及相对稳定
22、11/13/202265第5章 元件保护变压器接地后备保护判据中性点接地运行变压器 零序过电流 3I0中性点不接地运行变压器 零序过电压 3U0 放电间隙过流为保护变压器中性点,一般在中性点装设放电间隙中性点必须接地运行的变压器 配置零序过电流 3I0中性点可接地或不接地运行的变压器 配置零序过电流,零序过电压,放电间隙过流11/13/202266第5章 元件保护注意缩小故障范围 变压器后备保护动作首先切除母联、分段。注意选跳顺序全级绝缘变压器、中性点带放电间隙的分级绝缘变压器中性点耐压能力较好先切除中性点接地运行主变,再切除中性点不接地运行主变中性点不带放电间隙的分级绝缘变压器中性点耐压能力
23、较差先切除中性点不接地运行主变,再切除中性点接地运行主变11/13/202267第5章 元件保护中性点直接接地运行变压器的接地保护配置两段零序电流保护,分别与线路零序、段配合每段设置两个延时,短延时t1、t3切除母联、分段,长延时t2、t4跳主变 相邻线路零序段最长动作时间11/13/202268第5章 元件保护3I0II3I0It10t30t40T1T3T4QF1母联解列(跳QF)跳主变(跳QF1、2)QFQF1TAQET2t20QF2防止主变未并列时因高压侧接地误跳母联11/13/202269第5章 元件保护零序段起动电流按与相邻元件零序电流段配合整定,即 配合系数,取1.11.2;零序电
24、流分支系数相邻元件零序电流I段起动电流零序电流分支系数等于最大运行方式下在相邻元件I段保护范围末端发生单相接地短路时,流过本线路的零序电流与流过相邻元件的零序电流之比 11/13/202270第5章 元件保护零序段起动电流按与相邻元件零序电流段配合整定,即 配合系数,取1.11.2;零序电流分支系数相邻元件零序电流段起动电流零序电流分支系数等于最大运行方式下在相邻元件段保护范围末端发生单相接地短路时,流过本线路的零序电流与流过相邻元件的零序电流之比 11/13/202271第5章 元件保护中性点可接地或不接地运行时变压器接地保护1.全级绝缘变压器零序电流保护,配置与中性点直接接地变压器相同零序
25、电压保护,动作电压较高,180-200V仅当中性点接地变压器切除后,零序电压升高,才能动作。可见:先切除中性点接地运行变压器,再切除中性点不接地变压器11/13/202272第5章 元件保护0.3-0.5s抗干扰11/13/202273第5章 元件保护中性点装设放电间隙的分级绝缘变压器保护配置:在全级绝缘变压器接地保护上增加了一个放电间隙保护当放电间隙击穿,放电电流超过100A时,则不需要等中性点接地运行主变跳闸,直接跳开中性点不接地变压器。除放电间隙保护,零序电流、电压保护与全级绝缘的变压器接地保护相同。11/13/202274第5章 元件保护跳主变跳主变放电间隙保护11/13/202275
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电力系统继电保护 教学课件 韩笑 第五章 电力系统 保护 教学 课件 第五
限制150内