浙江大学SVM支持向量机.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《浙江大学SVM支持向量机.ppt》由会员分享,可在线阅读,更多相关《浙江大学SVM支持向量机.ppt(68页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、浙江大学研究生浙江大学研究生人工智能引论人工智能引论课件课件徐从富徐从富(Congfu Xu)PhD,Associate Professor Email:Institute of Artificial Intelligence,College of Computer Science,Zhejiang University,Hangzhou 310027,P.R.ChinaSeptember 11,2003第一稿第一稿Oct.16,2006第三次修改稿第三次修改稿第八章 统计学习理论与SVM(Chapter8 SLT&SVM)目录目录n概述n统计学习理论中的基本概念n统计学习理论的发展简况n统计
2、学习理论的基本内容n支持向量机概述n研究现状n参考文献8.1.1 SLT&SVM的地位和作用的地位和作用n是统计学习方法的优秀代表n有严密的数学依据,得到了严格的数学证明n有力反驳 “复杂的理论是没有用的,有用的是简单的算法”等错误观点n充分表明 “没有什么比一个好的理论更实用没有什么比一个好的理论更实用了了”等基本的科学原则8.1 概述概述8.1.2 SLT&SVM的数学基础的数学基础概率论与数理统计泛函分析“For God so loved the world that he gave his one and only Son,that whoever believes in him sh
3、all not perish but have eternal life.For God did not send his Son into the world to condemn the world,but to save the world through him.”from JOHN 3:16-17 NIV 8.1.3 SLT&SVM所坚持的“基本信念”传统的估计高维函数依赖关系的方法所坚持的信念传统的估计高维函数依赖关系的方法所坚持的信念 实际问题中总存在较少数目的一些“强特征强特征”,用它们的简单函数(如线性组合)就能较好地逼近未知函数。因此,需要仔细地选择一个低仔细地选择一个低维
4、的特征空间维的特征空间,在这个空间中用常规的统计技术来求解一个逼近。SLT&SVM所坚持的信念所坚持的信念 实际问题中存在较大数目的一些“弱特征弱特征”,它们“巧妙的”线性组合可较好地逼近未知的依赖关系。因此,采用什么样的“弱特征”并不十分重要,而形成“巧妙的”线性组合更为重要。8.1.4 SLT&SVM与传统方法的区别要较好地实现传统方法传统方法,需要人工选择(构造)一些数目相对较少的“巧妙的特征”SVM方法方法则是自动地选择(构造)一些数目较少的“巧妙的特征”在实际应用中,可通过构造两层(或多层)构造两层(或多层)SVM来选择“巧妙的特征”SLT&SVM集以下模型于一身:结构风险最小化(S
5、RM)模型数据压缩模型构造复合特征的一个通用模型 在希尔伯特空间中的内积回旋可以 看作是构造特征的一种标准途径。对实际数据的一种模型 一个小的支持向量集合可能足以对不同的机器代表整个训练集。8.2 SLT中的基本概念中的基本概念n统计方法统计方法 从观测自然现象或者专门安排的实验所得到的数据去推断该事务可能的规律性。n统计学习理论统计学习理论 在研究小样本小样本统计估计和预测的过程中发展起来的一种新兴理论。【注意注意】:这里所说的“小样本”是相对于无穷样本而言的,故只要样本数不是无穷,都可称为小样本,更严格地说,应该称为“有限样本有限样本”。统计学习理论中的基本概念(续)n机器学习机器学习 主
6、要研究从采集样本出发得出目前尚不能通过原理分析得到的规律,并利用这些规律对未来数据或无法观测的数据进行预测。n模式识别模式识别 对表征事务或现象的各种形式(数值、文字及逻辑关系等)信息进行处理和分析,以对事务或现象进行描述、辨认、分类和解释的过程。n统计学习理论统计学习理论 一种研究有限样本估计和预测的数学理论8.3 统计学习理论的发展简况统计学习理论的发展简况n学习过程的数学研究F.Rosenblatt于1958,1962年把感知器作为一个学习机器模型n统计学习理论的开始Novikoff(1962)证明了关于感知器的第一个定理n解决不适定问题的正则化原则的发现Tikhonov(1963),I
7、vanov(1962),Phillips(1962)nVanik和Chervonenkis(1968)提出了VC熵熵和VC维维的概念提出了统计学习理论的核心概念得到了关于收敛速度的非渐进界的主要结论SLTSLT的发展简况的发展简况(续续)Vapnik和Chervonenkis(1974)提出了结构风结构风险最小化(险最小化(SRM)归纳原则归纳原则。Vapnik和Chervonenkis(1989)发现了经验风险最小化归纳原则和最大似然方法一致性的充分必要条件,完成了对经验风险最小化归纳推理的分析。90年代中期,有限样本情况下的机器学习理论研究逐渐成熟起来,形成了较完善的理论体系统计学习理论(
8、Statistical Learning Theory,简称SLT)8.4 统计学习理论的基本内容统计学习理论的基本内容n机器学习的基本问题n统计学习理论的核心内容8.4.1 机器学习的基本问题机器学习的基本问题n机器学习问题的表示学习问题的表示学习问题的表示n产生器(G),产生随机向量x属于Rn,它们是从固定但未知的概率分布函数F(x)中独立抽取的。n训练器(S),对每个输入向量x返回一个输出值y,产生输出的根据是同样固定但未知的条件分布函数 F(y|x)。n学习机器(LM),它能够实现一定的函数集f(x,a),a属于A,其中A是参数集合。8.4.2 机器学习的基本问题机器学习的基本问题n机
9、器学习就是从给定的函数集f(x x,)(是参数)中,选择出能够最好地逼近训练器响应的函数。n机器学习的目的可以形式化地表示为:根据n个独立同分布的观测样本 ,在一组函数 中求出一个最优函数 对训练器的响应进行估计,使期望风险最小 其中 是未知的,对于不同类型的机器学习问题有不同形式的损失函数。三类基本的机器学习问题三类基本的机器学习问题n模式识别n函数逼近(回归估计)n概率密度估计【补充说明】:用有限数量信息解决问题的基基本原则本原则 在解决一个给定问题时,要设在解决一个给定问题时,要设法避免把解决一个更为一般的问题作为其中法避免把解决一个更为一般的问题作为其中间步骤间步骤。上述原则意味着,当
10、解决模式识别或回归估计问题时,必须设法去必须设法去“直接直接”寻找待求的函数寻找待求的函数,而不是不是首先估计密度,然后用估计的密度来构造待求的函数。密度估计密度估计是统计学中的一个全能问题,即知道了密度就可以解决各种问题。一般地,估计密度是一个不适定问题(ill-posed problem),需要大量观测才能较好地解决。实际上,需要解决的问题(如决策规则估计或回归估计)是很特殊的,通常只需要有某一合理数通常只需要有某一合理数量的观测就可以解决量的观测就可以解决。经验风险最小化原则经验风险最小化原则n对于未知的概率分布,最小化风险函数,只有样本的信息可以利用,这导致了定义的期望风险是无法直接计
11、算和最小化的。n根据概率论中大数定理,可用算术平均代替数据期望,于是定义了经验风险 来逼近期望风险。n经验风险最小化(ERM)原则:使用对参数w求经验风险 的最小值代替求期望风险 的最小值。经验风险最小化经验风险最小化n从期望风险最小化到经验风险最小化没有可靠的依据,只是直观上合理的想当然。期望风险和经验风险都是w的函数,概率论中的大数定理只说明了当样本趋于无穷多时经验风险将在概率意义上趋近于期望风险,并没有保证两个风险的w是同一点,更不能保证经验风险能够趋近于期望风险。即使有办法使这些条件在样本数无穷大时得到保证,也无法认定在这些前提下得到的经验风险最小化方法在样本数有限时仍能得到好的结果。
12、复杂性与推广能力复杂性与推广能力n学习机器对未来输出进行正确预测的能力称作推推广能力(广能力(也称为“泛化能力泛化能力”)。)。n在某些情况下,训练误差过小反而导致推广能力的下降,这就是过学习过学习问题。n神经网络的过学习问题是经验风险最小化原则失败的一个典型例子。用三角函数拟合任意点用三角函数拟合任意点学习的示例学习的示例复杂性与推广能力(续)复杂性与推广能力(续)n在有限样本情况下,经验风险最小并不一定意味着期望风险最小;学习机器的复杂性不但与所研究的系统有关,而且要和有限的学习样本相适应;学习精度和推广性之间似乎是一对不可调和的学习精度和推广性之间似乎是一对不可调和的矛盾矛盾,采用复杂的
13、学习机器虽然容易使得学习误采用复杂的学习机器虽然容易使得学习误差更小差更小,却往往丧失推广性;却往往丧失推广性;传统的解决办法(例如:采用正则化、模型选择、噪声干扰等方法以控制学习机器的复杂度)缺乏坚实的理论基础。8.5 统计学习理论的核心内容统计学习理论的核心内容nSLT被认为是目前针对有限样本统计估计和预测学习的最佳理论,它从理论上较为系统地研究了经验风险最小化原则成立的条件、有限样本下经验风险与期望风险的关系及如何利用这些理论找到新的学习原则和方法等问题。nSLT的主要内容包括:基于经验风险原则的统计学习过程的一致性理论学习过程收敛速度的非渐进理论控制学习过程的推广能力的理论构造学习算法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江大学 SVM 支持 向量
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内