概率论与数理统计第五章教案.ppt
《概率论与数理统计第五章教案.ppt》由会员分享,可在线阅读,更多相关《概率论与数理统计第五章教案.ppt(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第五章 大数定律和 中心极限定理湖南商学院信息系湖南商学院信息系 数学教研室数学教研室第五章 大数定律和中心极限定理 第一节 大 数 定 律第二节 中心极限定理 概率论与数理统计是研究随机现象统计概率论与数理统计是研究随机现象统计规律性的学科规律性的学科.随机现象的规律性只有在相随机现象的规律性只有在相同的条件下进行大量重复试验时才会呈现出同的条件下进行大量重复试验时才会呈现出来来.也就是说,要从随机现象中去寻求必也就是说,要从随机现象中去寻求必然的法则,应该研究大量随机现象然的法则,应该研究大量随机现象.研究大量的随机现象,常常采用极限研究大量的随机现象,常常采用极限形式,由此导致对极限定理
2、进行研究形式,由此导致对极限定理进行研究.极极限定理的内容很广泛,其中最重要的有两限定理的内容很广泛,其中最重要的有两种种:与与大数定律大数定律中心极限定理中心极限定理下面我们先介绍大数定律下面我们先介绍大数定律 大量的随机现象中平均结果的稳定性大量的随机现象中平均结果的稳定性 大数定律的客观背景大数定律的客观背景大量抛掷硬币大量抛掷硬币正面出现频率正面出现频率字母使用频率字母使用频率生产过程中的生产过程中的废品率废品率几个常见的大数定律几个常见的大数定律定理定理1(切比雪夫大数定律)切比雪夫大数定律)设设 X1,X2,是相互独立的随是相互独立的随机变量序列,它们都有有限的方差,机变量序列,它
3、们都有有限的方差,并且方差有共同的上界,即并且方差有共同的上界,即 Var(Xi)K,i=1,2,,切比雪夫切比雪夫则对任意的则对任意的0,切比雪夫大数定律表明,独立随机变切比雪夫大数定律表明,独立随机变量序列量序列Xn,如果方差有共同的上界,则如果方差有共同的上界,则与其数学期望与其数学期望 偏差很小的偏差很小的 概率接近于概率接近于1.随机的了,取值接近于其数学期望的概率接随机的了,取值接近于其数学期望的概率接近于近于1.即当即当n充分大时,充分大时,差不多不再是差不多不再是切比雪夫大数定律给出了切比雪夫大数定律给出了平均值稳定性的科学描述平均值稳定性的科学描述 证明切比雪夫大数定律主要的
4、数学证明切比雪夫大数定律主要的数学工具是切比雪夫不等式工具是切比雪夫不等式.设随机变量设随机变量X有期望有期望E(X)和方差和方差 ,则对于任给则对于任给 0,作为切比雪夫大数定律的特殊情况,作为切比雪夫大数定律的特殊情况,有下面的定理有下面的定理.定理定理2(独立同分布下的大数定律独立同分布下的大数定律)设设X1,X2,是独立同分布的随机变量是独立同分布的随机变量序列,且序列,且E(Xi)=,Var(Xi)=,i=1,2,则对任给则对任给 0,下面给出的贝努里大数定律,下面给出的贝努里大数定律,是定理是定理2的一种特例的一种特例.贝努里贝努里 设设Sn是是n重贝努里试验中事件重贝努里试验中事
5、件A发发生的次数,生的次数,p是事件是事件A发生的概率,发生的概率,引入引入i=1,2,n则则 是事件是事件A发生的频率发生的频率 于是有下面的定理:于是有下面的定理:设设Sn是是n重贝努里试验中事件重贝努里试验中事件A发生的发生的 次数,次数,p是事件是事件A发生的概率,则对任给的发生的概率,则对任给的 0,定理定理3(贝努里大数定律贝努里大数定律)或或贝努里贝努里 贝努里大数定律表明,当重复试验次数贝努里大数定律表明,当重复试验次数n充分大时,事件充分大时,事件A发生的频率发生的频率Sn/n与事件与事件A的概率的概率p有较大偏差的概率很小有较大偏差的概率很小.贝努里大数定律提供了通过试验来
6、确贝努里大数定律提供了通过试验来确定事件概率的方法定事件概率的方法.任给任给0,贝努里大数定律贝努里大数定律请看演示请看演示下面给出的独立同分布下的大数定下面给出的独立同分布下的大数定律,不要求随机变量的方差存在律,不要求随机变量的方差存在.设随机变量序列设随机变量序列X1,X2,独立同独立同分布,具有有限的数学期分布,具有有限的数学期E(Xi)=,i=1,2,,则对任给则对任给 0,定理定理3(辛钦大数定律辛钦大数定律)辛钦大数定律辛钦大数定律辛钦辛钦请看演示请看演示 例如要估计某地区的平均亩产量,要例如要估计某地区的平均亩产量,要收割某些有代表性的地块,例如收割某些有代表性的地块,例如n
7、块块.计计算其平均亩产量,则当算其平均亩产量,则当n 较大时,可用它较大时,可用它作为整个地区平均亩产量的一个估计作为整个地区平均亩产量的一个估计.这一讲我们介绍了大数定律这一讲我们介绍了大数定律 大数定律以严格的数学形式表达了随大数定律以严格的数学形式表达了随机现象最根本的性质之一:机现象最根本的性质之一:它是随机现象统计规律的具体表现它是随机现象统计规律的具体表现.大数定律在理论和实际中都有广泛的应用大数定律在理论和实际中都有广泛的应用.平均结果的稳定性平均结果的稳定性休息片刻继续下一讲休息片刻继续下一讲 第五章第二节 中心极限定理 中心极限定理的客观背景中心极限定理的客观背景 在实际问题
8、中,常常需要考虑许多随机在实际问题中,常常需要考虑许多随机因素所产生总影响因素所产生总影响.例如:炮弹射击的落点与目标的偏差,就受例如:炮弹射击的落点与目标的偏差,就受着许多随机因素的影响着许多随机因素的影响.空气阻力所产生的误差,空气阻力所产生的误差,对我们来说重要的是这些对我们来说重要的是这些随机因素的总影响随机因素的总影响.如瞄准时的误差,如瞄准时的误差,炮弹或炮身结构所引起的误差等等炮弹或炮身结构所引起的误差等等.观察表明,如果一个量是由大量相互独观察表明,如果一个量是由大量相互独立的随机因素的影响所造成,而每一个别因立的随机因素的影响所造成,而每一个别因素在总影响中所起的作用不大素在
9、总影响中所起的作用不大.则这种量一则这种量一般都服从或近似服从正态分布般都服从或近似服从正态分布.自从高斯指出测量误差服从正自从高斯指出测量误差服从正态分布之后,人们发现,正态分布态分布之后,人们发现,正态分布在自然界中极为常见在自然界中极为常见.现在我们就来研究独立随机变量之和所现在我们就来研究独立随机变量之和所特有的规律性问题特有的规律性问题.当当n无限增大时,这个和的极限分布是无限增大时,这个和的极限分布是什么呢?什么呢?在什么条件下极限分布会是正态的呢?在什么条件下极限分布会是正态的呢?由于无穷个随机变量之和可能趋于由于无穷个随机变量之和可能趋于,故我们不研究故我们不研究n个随机变量之
10、和本身而考虑它个随机变量之和本身而考虑它的标准化的随机变量的标准化的随机变量的分布函数的极限的分布函数的极限.的分布函数的极限的分布函数的极限.可以证明,满足一定的条件,上述极可以证明,满足一定的条件,上述极限分布是标准正态分布限分布是标准正态分布.考虑考虑中心极限定理中心极限定理这就是下面要介这就是下面要介绍的绍的 在概率论中,习惯于把和的分布收在概率论中,习惯于把和的分布收敛于正态分布这一类定理都叫做敛于正态分布这一类定理都叫做中心极中心极限定理限定理.我们只讨论几种简单情形我们只讨论几种简单情形.下面给出的独立同分布随机变量序列下面给出的独立同分布随机变量序列的中心极限定理,也称的中心极
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 第五 教案
限制150内