硬质合金微观结构1课件教学提纲.ppt
《硬质合金微观结构1课件教学提纲.ppt》由会员分享,可在线阅读,更多相关《硬质合金微观结构1课件教学提纲.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、硬质合金微观结构1课件WC的颗粒形状受合金含碳量和含钴量的影响。随含碳量的增高,在1450oC下烧结2h,WC晶粒择优生长而呈现矩形形状。烧结时间增加到8h时,粗大WC颗粒开始呈现三角形棱柱体状,而含碳量低时,WC颗粒主要为阶梯状的棱柱体。硬质合金中的相:硬质相由于表面张力大小的差别,多元硬质合金中的TiC、TaC和NbC等硬质相晶粒更为接近圆形或卵形。此外,金相观察显示,WC相呈白亮颗粒,而立方相碳化物呈灰白色晶粒。硬质合金中的相:硬质相 WC晶粒度的增大会导致合金硬度的持续下降;而WC晶粒的增大在一定限度内会使合金强度增高,过此限度后则会使合金强度下降。这说明为了为什么对普通WC-Co合金
2、,硬度和抗弯强度难以同时兼顾。特殊方法制造的超细晶粒合金的硬度、强度均比相同成分的普通合金高。一般硬度要高1.52HRA硬度值,抗弯强度要高6080kg/mm2,高温硬度、抗压强度也高得多。)WC晶粒度对合金性能的影响 原始粒度:原始粒度:原始粒度越细,烧结时越易长大。当原始粉末粒度分布很广,特别是有大量细颗粒WC存在时,烧结时出现异常长大的晶粒数较多。杂质:含量仅10ppm左右的Fe杂质会促使烧结时WC晶粒长大。约0.3%的Ni和Cr能分别使烧结时WC晶粒发生明显的粗化和细化。碳含量:碳含量:碳含量对合金碳化物晶粒的影响极为显著。普通认为随碳含量增加,烧结时碳化物的长大更为严重。下式可定量描
3、述碳含量对烧结时碳化物晶粒长大程度的影响:WC晶粒度的影响因素式中:Xs-烧结后碳化物的平均晶粒度;Xc-烧结前碳化物的平均晶粒度。钴在417左右会发生同素异晶转变,一种马氏体相变类型转变,在相变温度Ms以上,f.c.c.结构的相是稳定相,在相变温度Ms以下,h.c.p.结构的相是稳定相。h.c.p.结构金属往往塑性较差,而且h.c.p.结构的-Co,其c/a之值约等于1.6223,所以-Co与-Co相比,其独立滑移系少,形变协调性较差,塑性及韧性较低。当Co中相含量从26%降至4%时,试样的延伸率就从50%降至7%。因此,应尽可能多地保留-Co到室温而提高钴的性能。硬质合金中的钴相,由于溶入
4、了W和C,其相变温度和程度会发生一定的变化。然而,相变总会发生。例如,在硬质合金刀具表面那些变形力涉及的部位,钴的相变不可避免,因为塑性变形会大大降低。这些-Co存在无疑会对合金的物理机械性能和耐磨性产生不良影响。钴粘结相结构对合金性能的影响钴及钴相强化主要包括合金化和弥散强化等方法控制-Co-Co相变。钴的合金化:的合金化:当钴中含有1%的Fe、W、Al、Ti、Zr、Nb和Ta时,相的含量会有不同程度的增加。当钴中有6%的Fe、Ti或10%的Ta时,合金中相含量超过80%。相含量的增加一般均伴有合金强度与延伸率的改善,但也有例外当钴中含有1%的Ni或W时,虽然相含量增加,强度和延伸率反而下降
5、;而当含有6%Fe时,虽然合金结构以相为主,延伸率大大提高,但强度却有所降低。一般认为,某些合金元素之所以能抑制钴的相变,增加-Co相含量。这是因为这些元素偏聚在钴相内的位错上,有效地提高钴的层错能,从而减少层错宽度,使h.c.p.结构的相形核发生困难。X衍射分析表明,钴相中-Co相含量比纯钴中的要多,而且钴相中-Co-Co相变的转变温度也提高到了750左右。因此,钴相中溶解的W和WC对-Co有一定的稳定作用。钴及钴相的强化 适当氧化物的加入能改善钴及钴合金的高温抗蠕变性能。钴在高温下蠕变抗力的增加是由于氧化物弥散相引起了位错的塞积,从而使位错的攀移受阻,蠕变速度也就降低了。当钴中含有适量氧化
6、物时,不仅强度得到提高,其塑性也得到显著改善。弥散相越细,分布越均匀,合金的室温和高温性能就越好。合金塑性的改善可能是由于弥散相对位错运动有阻碍抑制了钴的-Co-Co相变。钴的弥散强化 当钴基体中含有0.11%(wt)CeO2、La2O3、Y2O3弥散质点时,钴的抗拉强度、硬度和延伸率均得到提高,尤其0.3%CeO2的加入可使抗拉强度和延伸率分别提高18.7%和80.4%。此外稀土氧化物含量增加的同时,-Co的含量也在增加,最多可增加151.8%,这与钴的强度,特别是塑性的改善有密切关系。-Co-Co相变发生时,母相中的层错对形核作用很大。电镜观察也表明,相的形核是层错在相邻面扩展的结果。当钴
7、中分布有适量的稀土氧化物弥散质点时,一方面质点以安塞尔或奥罗万机制阻碍位错运动,从而使依赖位错运动的固态相变受阻;另一方面,这些质点还容易钉扎在各种缺陷上,或占据母相的形变中心,从而减少了潜在核坯数量,同时还使马氏体胚芽或马氏体片的界面不易迁移。稀土氧化物的影响钴中弥散分布的稀土氧化物中弥散分布的稀土氧化物质点就在一定程度上抑制了点就在一定程度上抑制了-Co-Co相相变,使使钴的的强度和塑性得到提高。度和塑性得到提高。相晶粒越细,合金的抗弯强度越高,且当钴含量越高时越明显,即相细化强化机理。粘结相晶粒度一定时,在低温条件下,WC越细,其蠕变强度越高。相比较,高温下WC越细,其蠕变强度却越低。无
8、论WC晶粒度多大,在各种温度下合金的蠕变强度均随粘结相晶粒度增大而提高。相晶粒度对合金性能的影响 烧结后的冷却速度:后的冷却速度:冷却速度越大,相的晶粒度越小。因为冷却速度大时,成核速度也大,WC相的晶核就来不及长大。但是,低钴合金的相晶粒度受冷却速度的影响较小。钴含量:含量:钴含量越高(含碳量越低),合金中相的晶粒度越大,反之则越细。这时因为钴含量越高,合金中液相所占的体积百分数也越大,WC对相长大的抑制作用就相对减弱了。WC相的粒度:相的粒度:WC相晶粒度越大,相的晶粒度也越粗。碳含量:碳含量:碳含量对相晶粒度的影响明显。越是低碳的合金,相的粒度越粗大。因为对低碳合金,相中固溶的WC量较高
9、,而固相WC量相对减少,凝固时相就容易长大。相晶粒度的影响因素中间相在WC-Co硬质合金中,W从WC晶粒上向相扩散的速度较慢。相晶坯一般沿WC-相界并以WC晶粒表面为异质核心而成核。相的形成消耗了相中的W和C溶质,促使与相毗邻的WC晶粒向相中补充。相的形成受液相流动的影响,呈密布小块状和长条形状。中中间相的影响:相的影响:WC-Co硬质合金性能明显地取决于合金的最终成分和结构,对理想碳含量的稍许偏离都会导致出现石墨或缺碳中间相(通常叫相),从而严重地损害硬质合金的物理机械性能和切削性能。中中间相的成分:相的成分:从结构上看,中间相是烧结过程中从钴粘结相中析出的金属间化合物。不同温度下会生成许多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 硬质合金 微观 结构 课件 教学 提纲
限制150内