离散数学高等教育出版社屈婉玲.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《离散数学高等教育出版社屈婉玲.ppt》由会员分享,可在线阅读,更多相关《离散数学高等教育出版社屈婉玲.ppt(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、离散数学高等教育出版社屈婉玲 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望5.1 一阶逻辑等值式与置换规则一阶逻辑等值式与置换规则定义定义5.1 设设A,B是两个谓词公式是两个谓词公式,如果如果AB是永真式是永真式,则称则称A与与B等值等值,记作记作AB,并称并称AB是是等值式等值式基本等值式基本等值式第一组第一组 命题逻辑中命题逻辑中16组基本等值式的代换实例组基本等值式的代换实例 例如,例如,xF(x)xF(x),xF(x)yG(y)xF(x)yG(y)等等
2、第二组第二组 (1)消去量词等值式消去量词等值式 设设D=a1,a2,an xA(x)A(a1)A(a2)A(an)xA(x)A(a1)A(a2)A(an)2基本等值式基本等值式(2)量词否定等值式量词否定等值式 xA(x)x A(x)xA(x)x A(x)(3)量词辖域收缩与扩张等值式量词辖域收缩与扩张等值式.A(x)是含是含 x 自由出现的公式,自由出现的公式,B 中不含中不含 x 的自由出现的自由出现 关于全称量词的:关于全称量词的:x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x)BxA(x)3基本等值式基本等值式 关于存在量词的:
3、关于存在量词的:x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x)BxA(x)(4)量词分配等值式量词分配等值式 x(A(x)B(x)xA(x)xB(x)x(A(x)B(x)xA(x)xB(x)注意:注意:对对,对对 无分配律无分配律4置换规则、换名规则、代替规则置换规则、换名规则、代替规则1.置换规则置换规则 设设(A)是含是含A的公式的公式,那么那么,若若AB,则则(A)(B).2.换名规则换名规则 设设A为一公式,将为一公式,将A中某量词辖域中个体变项的所有约束中某量词辖域中个体变项的所有约束 出现及相应的指导变元换成该量词辖域中未曾
4、出现过的个出现及相应的指导变元换成该量词辖域中未曾出现过的个 体变项符号,其余部分不变,设所得公式为体变项符号,其余部分不变,设所得公式为A,则,则AA.3.代替规则代替规则 设设A为一公式,将为一公式,将A中某个个体变项的所有自由出现用中某个个体变项的所有自由出现用A中中 未曾出现过的个体变项符号代替,其余部分不变,设所得未曾出现过的个体变项符号代替,其余部分不变,设所得 公式为公式为A,则,则AA.5实例实例例例1 将下面命题用两种形式符号化将下面命题用两种形式符号化,并证明两者等值并证明两者等值:(1)没有不犯错误的人没有不犯错误的人解解 令令F(x):x是人,是人,G(x):x犯错误犯
5、错误.x(F(x)G(x)或或 x(F(x)G(x)x(F(x)G(x)x(F(x)G(x)量词否定等值式量词否定等值式 x(F(x)G(x)置换置换 x(F(x)G(x)置换置换6实例实例(2)不是所有的人都爱看电影不是所有的人都爱看电影解解 令令F(x):x是人,是人,G(x):爱看电影:爱看电影.x(F(x)G(x)或或 x(F(x)G(x)x(F(x)G(x)x(F(x)G(x)量词否定等值式量词否定等值式 x(F(x)G(x)置换置换 x(F(x)G(x)置换置换7实例实例例例2 将公式化成等值的不含既有约束出现、又有自由出现将公式化成等值的不含既有约束出现、又有自由出现的个体变项的
6、个体变项:x(F(x,y,z)yG(x,y,z)解解 x(F(x,y,z)yG(x,y,z)x(F(x,y,z)tG(x,t,z)换名规则换名规则 x t(F(x,y,z)G(x,t,z)辖域扩张等值式辖域扩张等值式或者或者 x(F(x,y,z)yG(x,y,z)x(F(x,u,z)yG(x,y,z)代替规则代替规则 x y(F(x,u,z)G(x,y,z)辖域扩张等值式辖域扩张等值式8实例实例例例3 设个体域设个体域D=a,b,c,消去下述公式中的量词消去下述公式中的量词:(1)x y(F(x)G(y)解解 x y(F(x)G(y)(y(F(a)G(y)(y(F(b)G(y)(y(F(c)G
7、(y)(F(a)G(a)(F(a)G(b)(F(a)G(c)(F(b)G(a)(F(b)G(b)(F(b)G(c)(F(c)G(a)(F(c)G(b)(F(c)G(c)9实例实例解法二解法二 x y(F(x)G(y)x(F(x)yG(y)辖域缩小等值式辖域缩小等值式 x(F(x)G(a)G(b)G(c)(F(a)G(a)G(b)G(c)(F(b)G(a)G(b)G(c)(F(c)G(a)G(b)G(c)10实例实例(2)x yF(x,y)x yF(x,y)x(F(x,a)F(x,b)F(x,c)(F(a,a)F(a,b)F(a,c)(F(b,a)F(b,b)F(b,c)(F(c,a)F(c,b
8、)F(c,c)115.2 一阶逻辑前束范式一阶逻辑前束范式定义定义5.2 设设A为一个一阶逻辑公式,若为一个一阶逻辑公式,若A具有如下形式具有如下形式 Q1x1Q2x2QkxkB则称则称A为为前束范式前束范式,其中,其中Qi(1 i k)为为 或或,B为不含量词为不含量词的公式的公式.例如,例如,x(F(x)G(x)x y(F(x)(G(y)H(x,y)是前束范式是前束范式而而 x(F(x)G(x)x(F(x)y(G(y)H(x,y)不是前束范式,不是前束范式,12前束范式存在定理前束范式存在定理定理定理5.1(前束范式存在定理)(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式
9、一阶逻辑中的任何公式都存在与之等值的前束范式例例4 求下列公式的前束范式求下列公式的前束范式 (1)x(M(x)F(x)解解 x(M(x)F(x)x(M(x)F(x)(量词否定等值式)(量词否定等值式)x(M(x)F(x)后两步结果都是前束范式,说明公式的前束范式不惟一后两步结果都是前束范式,说明公式的前束范式不惟一.13求前束范式的实例求前束范式的实例 (2)xF(x)xG(x)解解 xF(x)xG(x)xF(x)x G(x)(量词否定等值式)(量词否定等值式)x(F(x)G(x)(量词分配等值式)(量词分配等值式)或或 xF(x)xG(x)xF(x)x G(x)量词否定等值式量词否定等值式
10、 xF(x)y G(y)换名规则换名规则 x y(F(x)G(y)辖域收缩扩张规则辖域收缩扩张规则14求前束范式的实例求前束范式的实例(3)xF(x)y(G(x,y)H(y)或或 xF(x)y(G(z,y)H(y)代替规则代替规则 x y(F(x)(G(z,y)H(y)解解 xF(x)y(G(x,y)H(y)zF(z)y(G(x,y)H(y)换名规则换名规则 z y(F(z)(G(x,y)H(y)辖域收缩扩张规则辖域收缩扩张规则155.3 一阶逻辑的推论理论一阶逻辑的推论理论推理的形式结构推理的形式结构1.A1 A2Ak B 若次式是永真式若次式是永真式,则称推理正确则称推理正确,记作记作A1
11、 A2Ak B2.前提前提:A1,A2,Ak 结论结论:B推理定理推理定理:永真式的蕴涵式永真式的蕴涵式16推理定理推理定理第一组第一组 命题逻辑推理定理的代换实例命题逻辑推理定理的代换实例 如如,xF(x)yG(y)xF(x)第二组第二组 基本等值式生成的推理定理基本等值式生成的推理定理 如如,xF(x)xF(x),xF(x)xF(x)xF(x)x F(x),x F(x)xF(x)第三组第三组 其他常用推理定律其他常用推理定律 (1)xA(x)xB(x)x(A(x)B(x)(2)x(A(x)B(x)xA(x)xB(x)(3)x(A(x)B(x)xA(x)xB(x)(4)x(A(x)B(x)x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散数学 高等教育出版社 屈婉玲
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内