ch6定积分的应用 高等数学.ppt
《ch6定积分的应用 高等数学.ppt》由会员分享,可在线阅读,更多相关《ch6定积分的应用 高等数学.ppt(90页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一节 定积分的元素法定积分的元素法第六章第六章 定积分的应用定积分的应用一、问题的提出一、问题的提出二、小结二、小结回顾回顾 曲边梯形求面积的问题曲边梯形求面积的问题一、问题的提出ab xyo面积表示为定积分的步骤如下面积表示为定积分的步骤如下(3)求和,得求和,得A的近似值的近似值ab xyo(4)求极限,得求极限,得A的精确值的精确值提示提示面面积积元元素素元素法的一般步骤:元素法的一般步骤:这个方法通常叫做这个方法通常叫做元素法元素法应用方向:应用方向:平面图形的面积;体积;平面曲线的弧长;平面图形的面积;体积;平面曲线的弧长;功;水压力;引力和平均值等功;水压力;引力和平均值等元素法
2、的提出、思想、步骤元素法的提出、思想、步骤.(注意微元法的本质)(注意微元法的本质)二、小结思考题思考题微元法的实质是什么?微元法的实质是什么?思考题解答思考题解答微元法的实质仍是微元法的实质仍是“和式和式”的极限的极限.第二节 平面图形的面积平面图形的面积一、直角坐标系情形一、直角坐标系情形二、极坐标系情形二、极坐标系情形三、小结三、小结曲边梯形的面积曲边梯形的面积曲边梯形的面积曲边梯形的面积一、直角坐标系情形解解两曲线的交点两曲线的交点面积元素面积元素选选 为积分变量为积分变量解解两曲线的交点两曲线的交点选选 为积分变量为积分变量于是所求面积于是所求面积说明:注意各积分区间上被积函数的形式
3、说明:注意各积分区间上被积函数的形式问题:问题:积分变量只能选积分变量只能选 吗吗?解解两曲线的交点两曲线的交点选选 为积分变量为积分变量如果曲边梯形的曲边为参数方程如果曲边梯形的曲边为参数方程曲边梯形的面积曲边梯形的面积解解椭圆的参数方程椭圆的参数方程由对称性知总面积等于由对称性知总面积等于4倍第一象限部分面积倍第一象限部分面积面积元素面积元素曲边扇形的面积曲边扇形的面积二、极坐标系情形解解由对称性知总面积由对称性知总面积=4倍第倍第一象限部分面积一象限部分面积解解利用对称性知利用对称性知求在直角坐标系下、参数方程形式求在直角坐标系下、参数方程形式下、极坐标系下平面图形的面积下、极坐标系下平
4、面图形的面积.(注意恰当的(注意恰当的选择积分变量选择积分变量有助于简化有助于简化积分运算)积分运算)三、小结思考题思考题思考题解答思考题解答xyo两边同时对两边同时对 求导求导积分得积分得所以所求曲线为所以所求曲线为练练 习习 题题练习题答案练习题答案第三节 体积体积一、旋转体的体积一、旋转体的体积二、平行截面面积为已知的立二、平行截面面积为已知的立 体的体积体的体积三、小结三、小结 旋转体旋转体就是由一个平面图形饶这平面内就是由一个平面图形饶这平面内一条直线旋转一周而成的立体这直线叫做一条直线旋转一周而成的立体这直线叫做旋转轴旋转轴圆柱圆柱圆锥圆锥圆台圆台一、旋转体的体积xyo旋转体的体积
5、为旋转体的体积为解解直线直线 方程为方程为解解解解补充补充利用这个公式,可知上例中利用这个公式,可知上例中解解体积元素为体积元素为二、平行截面面积为已知的立体的体积二、平行截面面积为已知的立体的体积 如果一个立体不是旋转体,但却知道该立如果一个立体不是旋转体,但却知道该立体上垂直于一定轴的各个截面面积,那么,这体上垂直于一定轴的各个截面面积,那么,这个立体的体积也可用定积分来计算个立体的体积也可用定积分来计算.立体体积立体体积解解取坐标系如图取坐标系如图底圆方程为底圆方程为截面面积截面面积立体体积立体体积解解取坐标系如图取坐标系如图底圆方程为底圆方程为截面面积截面面积立体体积立体体积旋转体的体
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ch6定积分的应用 高等数学 ch6 积分 应用
限制150内