仪器分析-张新荣-分子荧光光谱分析法教学提纲.ppt
《仪器分析-张新荣-分子荧光光谱分析法教学提纲.ppt》由会员分享,可在线阅读,更多相关《仪器分析-张新荣-分子荧光光谱分析法教学提纲.ppt(79页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、仪器分析仪器分析-张新荣张新荣-分子荧分子荧光光谱分析法光光谱分析法外界提供能量的方式有多种,如光照、加热、化学反应及生物代谢等。通过光照激发产生的荧光称为光致荧光。根据激发光的波长不同,荧光可分为射线荧光、紫外可见荧光和红外荧光等。根据发射荧光的粒子不同,荧光又可分为分子荧光和原子荧光。由于不同的物质其组成与结构不同,所吸收光的波长和发射光的波长也不同,利用这个特性可以进行物质的定性鉴别。如果该物质的浓度不同,它所发射的荧光强度就不同,测量物质的荧光强度可对其进行定量测定。荧光分析法(fluorescenceanalysis)就是利用物质的荧光特征和强度,对物质进行定性和定量分析的方法。荧光
2、分析法的特点是灵敏度高、选择性好、样品用量少和操作简便。它的灵敏度通常比分光光度法高23个数量级。在卫生检验、环境及食品分析、药物分析、生化和临床检验等方面有着广泛的应用。第一节基本原理一、荧光的产生一、荧光的产生物质分子的能级包括一系列电子能级、振动能级和转动能级。分子吸收能量后,从基态最低振动能级跃迁到第一电子激发态或更高电子激发态的不同振动能级(这一过程速度很快,大约10-15s),成为激发单重态分子。激发态分子不稳定,可以通过以下几种途径释放能量返回基态。1.振动驰豫这一过程只能发生在同一电子能级内,即分子通过碰撞以热的形式损失部分能量,从较高振动能级下降到该电子能级的最低振动能级上。
3、由于这一部分能量以热的形式释放,而不是以光辐射形式发出,故振动驰豫属于无辐射跃迁。2.内转换即激发态分子将多余的能量转变为热能,从较高电子能级降至较低的电子能级。内转换也属于无辐射跃迁。3.荧光较高激发态分子经无辐射跃迁降至第一电子激发单重态的最低振动能级后,仍不稳定,停留较短时间后(约10-8s,称作荧光寿命),以光辐射形式放出能量,回到基态各振动能级,这时所发射的光称为荧光。当然也可以无辐射跃迁形式返回基态。4.系间窜跃有些物质的激发态分子通过振动驰豫和内转换下降到第一电子激发态的最低振动能级后,有可能经过另一个无辐射跃迁转移至激发三重态,这一过程伴随着自旋方向的改变,称为系间窜跃。对于大
4、多数物质,系间窜跃是禁阻的。如果分子中有重原子(如I、Br等)存在,由于自旋-轨道的强偶合作用,电子自旋方向可以改变,系间窜跃就变得容易了。5.磷光经系间窜跃的分子再通过振动驰豫降至激发三重态的最低振动能级,停留一段时间(10-410s,称作磷光寿命),然后以光辐射形式放出能量返回到基态各振动能级,这时发出的光称为磷光(phosphorescence)。由于激发三重态能量比激发单重态最低振动能级能量低,故磷光辐射的能量比荧光更小,即磷光的波长比荧光更长。二、激发光谱和荧光光谱(一)荧光的检测光源发出的紫外可见光通过激发单色器分出不同波长的激发光,照射到样品溶液上,激发样品产生荧光。样品发出的荧
5、光为宽带光谱,需通过发射单色器分光后再进入检测器,检测不同发射波长下的荧光强度F。由于激发光不可能完全被吸收,可透过溶液,为了防止透射光对荧光测定的干扰,常在与激发光垂直的方向检测荧光(因荧光是向各个方向发射的)。(二)激发光谱与荧光光谱的形成任何荧光物质,都具有两种特征光谱,即激发光谱(excitationspectrum)和荧光发射光谱(fluorescenceemissionspectrum)。1.激发光谱保持荧光发射波长不变(即固定发射单色器),依次改变激发光波长(即调节激发单色器),测定不同波长的激发光激发下得到的荧光强度F(即激发光波长扫描)。然后以激发光波长为横坐标,以荧光强度F
6、为纵坐标作图,就可得到该荧光物质的激发光谱。激发光谱上荧光强度最大值所对应的波长就是最大激发波长,是激发荧光最灵敏的波长。物质的激发光谱与它的吸收光谱相似,所不同的是纵坐标。2.荧光光谱荧光光谱,又称发射光谱。保持激发光波长不变(即固定激发单色器),依次改变荧光发射波长,测定样品在不同波长处发射的荧光强度F。以发射波长为横坐标,以荧光强度F为纵坐标作图,得到荧光发射光谱。荧光发射光谱上荧光强度最大值所对应的波长就是最大发射波长。(三)荧光光谱与激发光谱的关系1.荧光光谱形状与激发光波长无关由于荧光是分子从第一电子激发态的最低振动能级返回到基态的各振动能级时释放的光辐射,与分子被激发至哪一个电子
7、激发态无关。2.荧光光谱比激发光谱波长为长由于分子吸收激发光被激发至较高激发态后,先经无辐射跃迁(振动驰豫、内转换)损失掉一部分能量,到达第一电子激发态的最低振动能级,再由此发出荧光。因此,荧光发射能量比激发光能量低,荧光光谱波长比激发光波长长。3.镜像对称对于高度对称的有机分子,其荧光光谱与吸收光谱呈镜像对称关系。解释1:能级结构相似性 荧光为第一电子激发单重态的最低振动能级跃迁到基态的各个振动能级而形成,即其形状与基态振动能级分布有关。激发光谱是由基态最低振动能级跃迁到第一电子激发单重态的各个振动能级而形成,即其形状与第一电子激发单重态的振动能级分布有关。由于激发态和基态的振动能级分布具有
8、相似性,因而呈镜像对称。S1S0三、影响荧光产生及荧光强度的因素影响荧光产生及荧光强度的因素(一)物质产生荧光的必要条件一种物质能否发荧光以及荧光强度的高低,与它的分子结构及所处的环境密切相关。能够发射荧光的物质都应同时具备两个条件:1.物质分子必须有强的紫外吸收(有*跃迁);2.物质具有较高的荧光效率(fluorescenceefficiency)。荧光效率也称荧光量子产率,用f 表示。可见,凡是使 kF 增加,使其它去活化常数降低的因素均可增加荧光量子产率。通常,kF 由分子结构决定(内因),而其它参数则由化学环境和结构共同决定。(二)影响荧光及其强度的因素。跃迁类型:如上所述,物质必须在
9、紫外可见区有强吸收和高荧光效率才能产生荧光。具有*跃迁的分子才有强吸收。*跃迁的大。共轭效应:大多数能产生荧光的物质都含有芳香环或杂环,具有共轭的*跃迁。其共轭程度愈大,荧光效率也愈大,且最大激发和发射波长都向长波长方向移动,如苯、萘、蒽三种物质。苯萘蒽维生素A205nm286nm356nm327nm278nm321nm404nm510nm0.110.290.36刚性平面结构:当荧光分子共轭程度相同时,分子的刚性和共平面性越大,荧光效率越大。有些物质本身不发荧光或荧光较弱,但和金属离子形成配合物后,如果刚性和共平面性增加,就可以发荧光或增强荧光。如8-羟基喹啉是弱荧光物质,与Mg2+、Al3+
10、等金属离子形成的配合物的荧光增强,利用这一特点可以间接测定金属离子。取代基团荧光分子上的各种取代基对分子的荧光光谱和荧光强度都有很大影响。给电子取代基如NH2、OH、OCH3、CN、NHR、NR2等,能增加分子的电子共轭程度,使荧光效率提高。而-COOH、NO2、C=O、F、Cl等吸电子取代基,可减弱分子电子共轭性,使荧光减弱甚至熄灭。还有一类取代基则对荧光的影响不明显,如R、SO3H、NH3等。温度温度对被测溶液的荧光强度有明显的影响。当温度升高时,介质粘度减小,分子运动加快,分子间碰撞几率增加,从而使分子无辐射跃迁增加,荧光效率降低。故降低温度有利于提高荧光效率及荧光强度。由于荧光仪器光源
11、的光强度大、温度较高,容易引起溶液温度升高,加之分析过程中室温可能发生变化,从而导致荧光强度改变。另外,有些荧光物质的溶液在激发光较长时间的照射下,还会发生光分解,使荧光强度下降。因此,试样不应长时间受光照射,只在测定荧光强度时才打开光闸,其余时间应关闭。在较高档的荧光分光光度计中,样品室四周设有冷却水套或配有恒温装置,以使溶液的温度在测定过程中保持恒定。溶剂:同一种荧光物质在不同的溶剂中,其荧光光谱的位置和荧光强度可能会有一定的差别,尤其是那些分子中含有极性取代基的荧光物质,它们的荧光光谱易受溶剂的影响。溶剂的影响可以分为一般溶剂效应和特殊溶剂效应。一般溶剂效应是指溶剂极性的影响。通常情况下
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 仪器 分析 张新荣 分子 荧光 光谱分析 教学 提纲
限制150内