数字电路英文版第四单元.pptx
《数字电路英文版第四单元.pptx》由会员分享,可在线阅读,更多相关《数字电路英文版第四单元.pptx(135页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 CHAPTER 4 Adjacency (相邻)Karnaugh map (卡诺图)Associative law (结合律)Cell (单元)Boolean expression(布尔表达式)Commutative law(交换律)Distributive law (分配律)Domain (定义域)“Dont care“(无关项)Literal (变量)Product-of-sums(POS)(和项之积)Product term (积项)Sum-of-products(SOP)(积项之和)Sum term (和项)Variable (变量)第1页/共135页KEY TERMSAdjacen
2、cy Characteristic of cells in a Karnaugh map in which there is a single-variable change from one cell to another cell next to it on any of its four sides.Associative law In addition(ORing)and multiplication(ANDing)of three or more variables,the order in which the variables are grouped makes no diffe
3、nce.第2页/共135页Boolean expression An arrangement of variables and logical operators used to express the operation of a logic circuit.Cell An area on a Karnaugh map that represents a unique combination of variables in product form.第3页/共135页Commutative law In addition(ORing)and multiplication(ANDing)of
4、two variables,the order in which the variables are ORed orANDed makes no diffence.Domain All of the variables in a Boolean expression.第4页/共135页Distributive law ORing several variables and then ANDing the result with a single variable is equivalent to ANDing the single variable with each of the sever
5、al variables and then ORing the products.“Dont care”A combination of input literals that cannot occur and can be used as a 1 or a 0 on a Karnaugh map.第5页/共135页Literal A variable or the complement of a variable.Product-of-sums(POS)A form of Boolean expression that is basically the ANDing of ORed term
6、s.Product term The Boolean product of two or more literals equivalent to an AND operation.第6页/共135页Sums-of-products(SOP)A form of Boolean expression that is basically the ORing of ANDed terms.Sum term The Boolean sum of two or more literals equivalent to an OR operation.Variable A symbol used to rep
7、resent a logical quantity that can have a value of 1 or 0,usually designated by an italic letter.第7页/共135页 Boolean algebra is the mathematics of digital systems.A basic knowledge of Boolean algebra is indispensable to the study and analysis of logical circuits.In the last chapter,Boolean operations
8、and expressions in terms of their relationship to NOT,AND,OR,NAND,and NOR gates were introduced.This section reviews that material and provides additional definitions and information.4.1 BOOLEAN OPERATIONS AND 4.1 BOOLEAN OPERATIONS AND EXPRESSIONS EXPRESSIONS 2.第8页/共135页A variable is a symbol used
9、to represent a logical quantity.The complement is the inverse of a variable.A literal is a variable or the complement of a variable.If A=1,then A=0.If A=1,then A=0.第9页/共135页Boolean Addition is equivalent to the OR operation.0+0=0,0+1=1,1+0=1,1+1=13.Some example:A+B,A+B,A+B+C,and A+B+C+D.第10页/共135页EX
10、AMPLE 41 Determine the values of A,B,C,and D which make the sum term A+B+C+D equal to 0.Solution:if A=0,B=1 so that B=0,C=0,D=1 so that D=0.A+B+C+D=0+1+0+1 =0+0+0+0=0Related Problem Determine the values of A and B which make the sum term A+B equal to 0.第11页/共135页Boolean Multiplication is equivalent
11、to the AND operation.0*0=0,0*1=0,1*0=0,1*1=1Some example:A*B,A*B,A*B*C,and A*B*C*D.第12页/共135页EXAMPLE 42 Determine the values of A,B,C,and D which make the product term A*B*C*D equal to 1.Solution:if A=1,B=0 so that B=1,C=1,D=0 so that D=1.A*B*C*D=1*0*1*0 =1*1*1*1=1Related Problem Determine the value
12、s of A and B which make the product term A*B equal to 1.第13页/共135页As in other areas of mathematics,there are certain well-developed rules and laws that must be followed in order to properly apply Boolean algebra.The most important of these are presented in this section.4.2 LAWS AND RULES OF 4.2 LAWS
13、 AND RULES OF BOOLEAN ALGEBRA BOOLEAN ALGEBRA 4.第14页/共135页Laws of Boolean Algebra1.Commutative Laws This law states that the order in which the variables are ORed makes no difference.Logical Addition A+B=B+AABA+BBAB+A5.第15页/共135页Logical MultiplicationThis law states that the order in which the varia
14、bles are ANDed makes no difference.A*B=B*AABA*BBAB*A6.第16页/共135页2.Associative Laws This law states that when ORing more than two variables,the result is the same regardless of the grouping of the variables.A+(B+C )=(A+B)+CABABCCB+CA+B(A+B)+CA+(B+C)7.第17页/共135页A(B C )=(A B)CABCB CA BA(B C)ABC(A B)C8.
15、This law states that it makes no difference in what order the variables are grouped when ANDing more than two variables.第18页/共135页3.Distributive Law This law states that ORing two or more variables and then ANDing the result with a single variable is equivalent to ANDing the single variable with eac
16、h of the two or more variables and then ORing the products.A(B+C )=A B+A C9.第19页/共135页BCAB+CXABACABXACX=A(B+C)X=A B+A C10.第20页/共135页Rules of Boolean Algebra1.A+0=A2.A+1=13.A*0=04.A*1=A5.A+A=A6.A+A=17.A*A =A8.A*A=09.A=A10.A+AB=A 11.A+A B=A+B12.(A+B)(A+C)=A+BC11.第21页/共135页11.A+AB=A+B This rule can be
17、proved as follows:A+AB=(A+AB)+AB rule 10:A=A+AB =(AA+AB)+AB rule 7:A=AA =AA+AB+AA+AB rule 8:AA=0 =(A+A)(A+B)factoring =1*(A+B)rule 6:A+A=1 =A+B rule 4:drop the 112.第22页/共135页A B AB A+AB A+B 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 equalAABB13.A+AB =A+B第23页/共135页12.(A+B)(A+C)=A+BC This rule can be pro
18、ved as follows:(A+B)(A+C)=AA+AC+AB+BC distributive =A+AC+AB+BC AA=A =A(1+C)+AB+BC factoring =A*1+AB+BC 1+C=1 =A(1+B)+BC factoring =A*1+BC 1+B=1 =A+BC A*1=A14.第24页/共135页A B C A+B A+C (A+B)(A+C)BC A+BC 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1
19、0 1 1 1 0 1 1 1 1 1 1 1 1 1 equal15.第25页/共135页ABCABC16.(A+B)(A+C)=A+BC第26页/共135页Another formula:AB+AC+BC=AB+ACAB+AC+BC=AB+AC+(A+A)BC A+A=1 =AB+AC+ABC+ABC Distributive =AB(1+C)+AC(1+B)factoring =AB+AC 1+C=1,1+B=1,How about:AB+AC+BCD=?第27页/共135页DeMorgan,a mathematician who know Boole,proposed two theo
20、rems that are an important part of Boolean algebra.In practical terms,DeMorgans theorems provide mathematical verification of the equivalency of the NAND and negative-OR gates and the equivalency of the NOR and negative-AND gates,which were discussed in Chapter 3.4.3 DEMORGANS THEOREMS 4.3 DEMORGANS
21、 THEOREMS 17.第28页/共135页DeMorgans First theoremThe complement of a product of variables is equal to the sum of the complements of the variables.XY=X+Y18.第29页/共135页The complement of a sum of variables is equal to the product of the complements of the variables.X+Y=X Y19.第30页/共135页 NAND Negative-OR Inp
22、ut OutputX Y XY X+Y 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0XYXYX YXY+20.第31页/共135页 NOR Negative-AND Input OutputX Y X+Y XY 0 0 1 1 0 1 0 0 1 0 0 0 1 1 0 0XYXYX+YX Y21.第32页/共135页Applying DeMorgans TheoremsA+BC +D(E+F)=A+BCD(E+F)=A+BCD(E+F)=A+BCD+(E+F)=(A+BC)(D+E+F)22.第33页/共135页The Duality Theorema.First,chan
23、ge each OR symbol to an AND symbol and each AND symbol to an OR symbol.b.Second,change each 0 to a 1 and 1 to a 0 Example:Original Rule A+1=1 Dual Rule A*0=0 Original Equation:A*(B+C)=(A*B)+(A*C)Dual Equation:A+(B*C)=(A+B)(A+C)23.第34页/共135页1.Commutative Law A+B=B+A AB=BA2.Associative Law A(BC)=(AB)C
24、 A+(B+C)=A+B+C3.Distributive Law A+(BC)=(A+B)(A+C)A(B+C)=AB+AC4.OR-AND Rules A+0=A A*1=A A+A=A A*A=A A+1=1 A*0=0 A+A=1 A*A=05.DeMorgans Laws A*B=A+B A+B=A*B ORIGINAL EQUATION DUAL EQUATION24.第35页/共135页Boolean algebra provides a concise way to express the operation of a logic circuit formed by a comb
25、ination of logic gates so that the output can be determined for various combinations of input values.4.4 BOOLEAN ANALYSIS OF 4.4 BOOLEAN ANALYSIS OF LOGIC CIRCUIT LOGIC CIRCUIT 25.第36页/共135页The Boolean Expression for a logic CircuitDCB+CDA(B+CD)BADC26.第37页/共135页The Truth Table for a Logic Circuit In
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字电路 英文 第四 单元
限制150内