第九章-微分方程与差分方程简介ppt课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《第九章-微分方程与差分方程简介ppt课件.ppt》由会员分享,可在线阅读,更多相关《第九章-微分方程与差分方程简介ppt课件.ppt(79页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。第九章 微分方程与差分方程简介9.1 微分方程的基本概念9.2 一阶微分方程9.3 高阶常系数线性微分方程9.4 差分方程的基本概念9.5 常系数线性差分方程9.6 高阶常系数线性差分方程calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。9.1 微分方程的基本概念一、微分方程的定义定义1:凡含有未知函数的导数或微分的方程,称为微分方程未知函
2、数为一元函数的微分方程,称为常微分方程未知函数为多元函数,同时含有多元函数的偏导数的微分方程,称为偏微分方程calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。二、微分方程的阶定义定义2:微分方程中,未知函数的最高阶导数的阶数称为微分方程的阶三、微分方程的解定义定义3:如果某个函数代入微分方程后使其两端恒等,则称此函数为该微分方程的解,如果微分方程的解所含独立的任意常数个数等于方程的阶数,则称此解为微分方程的通解。而微分方程任意确定的解称为微分方程的特解calculus从使用情况来看,闭胸式的
3、使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。9.2 一阶微分方程一、可分离变量的微分方程calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少
4、使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下
5、工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。二、齐次微分方程齐次微分方程不是可分离变量的微分方程,但通过变量代换可将其化为可分离变量的微分方程,方法如下:calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不
6、再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已
7、很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市
8、地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。一阶线性微分方程一阶线性微分方程 (Linear differential equation of first order)一一线性方程线性方程二二(Linear differential equation)二二伯努利方程伯努利方程三三(Bernoul
9、li differential equation)三三 小结小结 思考判断题思考判断题calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。一阶线性微分方程的标准形式一阶线性微分方程的标准形式:上方程称为齐次的上方程称为齐次的.上方程称为非齐次的上方程称为非齐次的.一一 线性方程线性方程(Linear differential equation)例如例如线性的线性的;非线性的非线性的.calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城
10、市地下工程施工中已很少使用,在此不再说明。齐次方程的通解为齐次方程的通解为1.1.线性齐次方程线性齐次方程一阶线性微分方程的解法一阶线性微分方程的解法(使用分离变量法使用分离变量法)calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。常数变易法常数变易法把齐次方程通解中的常数变易为待定函数的方法把齐次方程通解中的常数变易为待定函数的方法.作变换作变换2.2.线性非齐次方程线性非齐次方程calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的
11、城市地下工程施工中已很少使用,在此不再说明。积分得积分得calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。一阶线性非齐次微分方程的通解为一阶线性非齐次微分方程的通解为对应齐次对应齐次方程通解方程通解非齐次方程特解非齐次方程特解calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。解解例例1 1calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在
12、近些年的城市地下工程施工中已很少使用,在此不再说明。calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。例例2 2 如图所示如图所示,平行与平行与 轴的动直线被曲轴的动直线被曲 线线 与与 截下的线段截下的线段PQ之之长数值上等于阴影部分的面积长数值上等于阴影部分的面积,求曲线求曲线 .两边求导得两边求导得解解解此微分方程解此微分方程calculus从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。所求曲线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第九 微分方程 方程 简介 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内