第二章高分子化学.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《第二章高分子化学.pptx》由会员分享,可在线阅读,更多相关《第二章高分子化学.pptx(297页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023/2/171第二章第二章 高分子化学高分子化学 通过单体分子中的某些官能团之间的缩合聚合成高分子的反应称为缩合反应。缩聚反应兼有聚合成高分子和缩合出低分子物的双重意义,主产物称为缩合物。例如聚碳酸酯(PC)的制备:由于低分子副产物的析出,缩聚物的结构单元要比单体少一些原子,因此相对分子质量不再是单体相对分子质量的整数倍。第1页/共297页2023/2/172第二章第二章 高分子化学高分子化学 用于缩聚反应的单体所含的官能团主要有羟基(OH)、胺基(NH2)、羧基(COOH)、酯基(COOR)等。缩聚物中往往保留有特征基团,如酯键(OCO)、醚键(O)、酰胺键(NHCO)等。因此缩聚物一
2、般为杂链聚合物。高分子化学的发展导致了许多新的聚合方法的出现,如开环聚合、异构化聚合、氢转移聚合、成环聚合、基团转移聚合等,很难归纳到上述分类方法中。加聚和缩聚分类法至今尚有人使用。第2页/共297页2023/2/173第二章第二章 高分子化学高分子化学二、按聚合机理分类 20世纪50年代开始,按聚合机理和动力学过程,将聚合反应分为连锁聚合和逐步聚合两大类。连锁聚合的特点:(1)聚合需要活性中心,如自由基、阳离子、阴离子等,因此有自由基聚合、阳离子聚合、阴离子聚合之分。(2)聚合过程由链引发、链增长、链终止等基元反应组成。(3)聚合过程中相对分子质量变化不大,体系始终由单体、高分子量聚合物和引
3、发剂组成。没有分子量递增的产物。(4)单体转化率随时间增加。第3页/共297页2023/2/174第二章第二章 高分子化学高分子化学逐步聚合的特点:(1)低分子单体通过官能团间的缩合逐步形成大分子。体系由单体和分子量递增的一系列中间产物组成。(2)每一步反应的速率和活化能基本相同。(3)反应初期大部分单体很快形成低聚物,短期内转化率很高。随后低聚物相互反应,分子量缓慢上升。(4)大部分是平衡反应。烯类单体的加聚反应一般为连锁聚合;烯类单体的加聚反应一般为连锁聚合;大多数缩聚反应为逐步聚合。大多数缩聚反应为逐步聚合。第4页/共297页2023/2/175第二章第二章 高分子化学高分子化学2.2
4、连锁聚合反应 引言 烯类单体通过双键打开发生的加成聚合反应大多属于连锁聚合。连锁聚合反应通常由链引发、链增长和链终止等基元反应组成。每一步的速度和活化能相差很大。第5页/共297页2023/2/176第二章第二章 高分子化学高分子化学 聚合过程中有时还会发生链转移反应,但不是必须经过的基元反应。第6页/共297页2023/2/177第二章第二章 高分子化学高分子化学 引发剂分解成活性中心时,共价键有两种裂解形式:均裂和异裂。均裂的结果产生两个自由基;异裂的结果形成阴离子和阳离子。自由基、阴离子和阳离子均有可能作为连锁聚合的活性中心,因此有自由基聚合、阴离子聚合和阳离子聚合之分。第7页/共297
5、页2023/2/178第二章第二章 高分子化学高分子化学 自由基聚合是至今为止研究最为透彻的高分子合成反应。其聚合产物约占聚合物总产量的60%以上。特点:单体来源广泛、生产工艺简单、制备方法多样。重要的自由基聚合产物:高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚(甲基)丙烯酸及其酯类、聚丙烯腈、聚丙烯酰胺、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS树脂等。自由基聚合是最重要的高分子合成反应之一自由基聚合是最重要的高分子合成反应之一第8页/共297页2023/2/179第二章第二章 高分子化学高分子化学 连锁聚合的单体 连锁聚合的单体包括单烯类、共轭二烯类、炔类、羰基和环状化合物。不同
6、单体对聚合机理的选择性受共价键断裂后的电子结构控制。醛、酮中羰基双键上C和O的电负性差别较大,断裂后具有离子的特性,因此只能由阴离子或阳离子引发聚合,不能进行自由基聚合。环状单体一般也按阴离子或阳离子机理进行聚合。第9页/共297页2023/2/1710第二章第二章 高分子化学高分子化学 烯类单体的碳碳双键既可均裂,也可异裂,因此可进行自由基聚合或阴、阳离子聚合,取决于取代基的诱导效应和共轭效应。乙烯分子中无取代基,结构对称,因此无诱导效应和共轭效应。只能在高温高压下进行自由基聚合,得到低密度聚乙烯。在配位聚合引发体系引发下也可进行常温低压配位聚合,得到高密度聚乙烯。第10页/共297页202
7、3/2/1711第二章第二章 高分子化学高分子化学 分子中含有推电子基团,如烷基、烷氧基、苯基、乙烯基等,碳碳双键上电子云增加,有利于阳离子聚合进行。丙烯分子上有一个甲基,具有推电子性和超共轭双重效应,但都较弱,不足以引起阳离子聚合,也不能进行自由基聚合。只能在配位聚合引发体系引发下进行配位聚合。其他含有一个烷基的乙烯基单体也具有类似的情况。第11页/共297页2023/2/1712第二章第二章 高分子化学高分子化学 1,1取代的异丁烯分子中含有两个甲基,推电子能力大大增强,可进行阳离子聚合,但不能进行自由基聚合。含有烷氧基的烷氧基乙烯基醚、苯基的苯乙烯、乙烯基的丁二烯均可进行阳离子聚合。结论
8、:结论:含有1,1-双烷基、烷氧基、苯基和乙烯基的烯烃因推电子能力较强,可进行阳离子聚合。第12页/共297页2023/2/1713第二章第二章 高分子化学高分子化学 分子中含有吸电子基团,如腈基、羰基(醛、酮、酸、酯)等,碳碳双键上电子云密度降低,并使形成的阴离子活性种具有共轭稳定作用,因此有利于阴离子聚合进行。例如丙烯腈中的腈基能使负电荷在碳氮两个原子上离域共振而稳定。第13页/共297页2023/2/1714第二章第二章 高分子化学高分子化学 卤素原子既有诱导效应(吸电子),又有共轭效应(推电子),但两者均较弱,因此既不能进行阴离子聚合,也不能进行阳离子聚合,只能进行自由基聚合。如氯乙烯
9、、氟乙烯、四氟乙烯均只能按自由基聚合机理进行。除了少数含有很强吸电子基团的单体(如偏二腈乙烯、硝基乙烯)只能进行阴离子聚合外,大部分含吸电子基团的单体均可进行自由基聚合。含有共轭双键的烯类单体,如苯乙烯、-苯乙烯、丁二烯、异戊二烯等,因电子云流动性大,容易诱导极化,因此既可进行自由基聚合,也可进行阴、阳离子聚合。第14页/共297页2023/2/1715第二章第二章 高分子化学高分子化学结论:结论:乙烯基单体对离子聚合有较强的选择性,但对自由基聚合的选择性很小,大部分烯类单体均可进行自由基聚合。取代基对乙烯基单体聚合机理的影响如下:第15页/共297页2023/2/1716第二章第二章 高分子
10、化学高分子化学单体单体聚合类型聚合类型中文名称中文名称分子式分子式自由基自由基阴离子阴离子阳离子阳离子配位配位乙烯乙烯CH2=CH2丙烯丙烯CH2=CHCH3正丁烯正丁烯CH2=CHCH2CH3异丁烯异丁烯CH2=C(CH3)2+丁二烯丁二烯CH2=CHCH=CH2+异戊二烯异戊二烯CH2=C(CH3)CH=CH2+氯丁二烯氯丁二烯CH2=CClCH=CH2苯乙烯苯乙烯CH2=CHC6H5+-苯乙烯苯乙烯CH2=C(CH3)C6H5+氯乙烯氯乙烯CH2=CHCl偏二氯乙烯偏二氯乙烯CH2=CCl2+表21 常见烯类单体的聚合类型第16页/共297页2023/2/1717第二章第二章 高分子化学
11、高分子化学表21 常见烯类单体的聚合类型续表单体单体聚合类型聚合类型中文名称中文名称分子式分子式自由基自由基阴离子阴离子阳离子阳离子配位配位氟乙烯氟乙烯CH2=CHF四氟乙烯四氟乙烯CF2=CF2六氟丙烯六氟丙烯CF2=CFCF3偏二氟乙烯偏二氟乙烯CH2=CF2烷基乙烯基醚烷基乙烯基醚CH2=CHOR醋酸乙烯酯醋酸乙烯酯CH2=CHOCOCH3丙烯酸甲酯丙烯酸甲酯CH2=CHCOOCH3+甲基丙烯酸甲甲基丙烯酸甲酯酯CH=C(CH3)COOCH3+丙烯腈丙烯腈CH2=CHCN+偏二腈乙烯偏二腈乙烯CH2=C(CN)2硝基乙烯硝基乙烯CH2=CHNO2第17页/共297页2023/2/1718
12、第二章第二章 高分子化学高分子化学 由取代基的体积、数量和位置等因素所引起的空间位阻作用,对单体的聚合能力有显著影响,但不影响其对活性种的选择性。单取代烯类单体,即使取代基体积较大,也不妨碍聚合,如乙烯基咔唑。1,1双取代的烯类单体,因分子结构对称性更差,极化程度增加,因此更容易聚合。取代基体积较大时例外,如1,1-二苯乙烯不能聚合。第18页/共297页2023/2/1719第二章第二章 高分子化学高分子化学 1,2双取代的烯类化合物,因结构对称,极化程度低,位阻效应大,一般不能聚合。但有时能与其他单体共聚,如马来酸酐能与苯乙烯共聚。三取代、四取代的烯类化合物一般不能聚合,但氟代乙烯例外。例如
13、:氟乙烯、1,1-二氟乙烯、1,2-二氟乙烯、三氟乙烯、四氟乙烯均可聚合。不论氟代的数量和位置,均极易聚合。不论氟代的数量和位置,均极易聚合。原因:原因:氟原子半径较小,仅大于氢原子,不会造成空间位阻。第19页/共297页2023/2/1720第二章第二章 高分子化学高分子化学取代基取代基X取代基半径取代基半径/nm一取代一取代二取代二取代三取代三取代四取代四取代1,1-取代取代1,2-取代取代H0.032+F0.064+Cl0.099+CH30.109+Br0.114+I0.133+C6H50.232+表22 乙烯基单体取代基的体积与数量对聚合特性的影响*碳原子半径:0.075nm第20页/
14、共297页2023/2/1721第二章第二章 高分子化学高分子化学自由基聚合机理 考察自由基聚合有两个重要指标:聚合速率和分子量。为了弄清楚这两个指标的影响因素和控制方法,就必须从自由基聚合的机理入手。自由基聚合的基元反应1)链引发反应 形成单体自由基活性种的反应。引发剂、光能、热能、辐射能等均能使单体生成单体自由基。第21页/共297页2023/2/1722第二章第二章 高分子化学高分子化学 由引发剂引发时,由两步反应组成:a.初级自由基的生成 引发剂分解(均裂)形成自由基,为吸热反应,活化能高,反应速度慢。E=105150 kJ/mol (21)kd=10-410-6 s-1 (22)第2
15、2页/共297页2023/2/1723第二章第二章 高分子化学高分子化学b.单体自由基的形成 由初级自由基与单体加成产生,为放热反应,活化能低,反应速度快。E=20 34 kJ/mol (23)链引发包含第二步,因为这一步反应与后继的链增长反应相似,有一些副反应可以使某些初级自由基不参与单体自由基的形成,也就无法链增长。第23页/共297页2023/2/1724第二章第二章 高分子化学高分子化学2)链增长反应 链引发反应产生的单体自由基具有继续打开其它单体键的能力,形成新的链自由基,如此反复的过程即为链增长反应。两个基本特征:(1)放热反应,聚合热约55 95kJ/mol。第24页/共297页
16、2023/2/1725第二章第二章 高分子化学高分子化学(2)链增长反应活化能低,约为20 34 kJ/mol,反应速率极高,在0.01 几秒钟内聚合度就可达几千至几万,难以控制。因此,在自由基聚合反应体系内,往往只存在单体和聚合物两部分,不存在聚合度递增的一系列中间产物。第25页/共297页2023/2/1726第二章第二章 高分子化学高分子化学 自由基聚合反应中,结构单元间的连接存在“头尾”、“头头”(或“尾尾”)两种可能的形式,一般以头尾结构为主。原因:(1)头尾连接时,自由基上的独电子与取代基构成共轭体系,使自由基稳定。而头头连接时无共轭效应,自由基不稳定。两者活化能相差34 42 k
17、J/mol。共轭稳定性较差的单体,容易出现头头结构。聚合温度升高,头头结构增多。第26页/共297页2023/2/1727第二章第二章 高分子化学高分子化学(2)以头尾方式结合时,空间位阻要比头头方式结合时的小,故有利于头尾结合。虽然电子效应和空间位阻效应都有利于生成头尾结构聚合物,但还不能做到序列结构上的绝对规整。从立体结构来看,自由基聚合物分子链上取代基在空间的排布是无规的,因此聚合物往往是无定型的。第27页/共297页2023/2/1728第二章第二章 高分子化学高分子化学3)链终止反应 链自由基失去活性形成稳定聚合物的反应。可以分为偶合终止和歧化终止。偶合终止:两个链自由基头部的独电子
18、相互结合成共价键,生成饱和高分子的反应。生成的高分子两端都有引发剂碎片,聚合度为链自由基重复单元数的两倍。第28页/共297页2023/2/1729第二章第二章 高分子化学高分子化学 歧化终止:链自由基夺取另一个自由基上的氢原子或其他原子而相互终止的反应。此时生成的高分子只有一端为引发剂碎片,另一端为饱和或不饱和结构,两者各半,聚合度与链自由基中的单元数相同。第29页/共297页2023/2/1730第二章第二章 高分子化学高分子化学 偶合终止的活化能约为0,歧化终止的活化能为8 21 kJ/mol。终止方式与单体种类和聚合条件有关。一般而言,单体位阻大,聚合温度高,有利于歧化终止。例如:60
19、以下苯乙烯聚合以几乎全为偶合终止,60以上歧化终止逐步增多。60以下甲基丙烯酸甲酯聚合两种终止方式均有,60以上则以歧化终止逐步为主。第30页/共297页2023/2/1731第二章第二章 高分子化学高分子化学4)链转移反应 链自由基从单体、溶剂、引发剂、大分子上夺取原子而终止,而失去原子的分子成为自由基继续新的增长,使聚合反应继续进行的过程,称为“链转移反应”。向低分子转移的结果是使聚合物相对分子质量降低。第31页/共297页2023/2/1732第二章第二章 高分子化学高分子化学 链自由基可从已形成的大分子上夺取原子而转移,结果是形成支链型大分子。链转移反应不是自由基聚合必须经过的基元链转
20、移反应不是自由基聚合必须经过的基元反反应,但具有十分重要的意义。应,但具有十分重要的意义。第32页/共297页2023/2/1733第二章第二章 高分子化学高分子化学 链自由基向某些物质转移后,所形成的新自由基活性很低,不足以再引发单体聚合,只能与其他自由基发生双基终止,导致聚合过程停止。这种现象称为“阻聚反应”。具有阻聚作用的物质称为“阻聚剂”。如:苯醌、1,1-二苯基-2-三硝基苯肼(DPPH)等。阻聚反应不是自由基聚合的基元反应,但在阻聚反应不是自由基聚合的基元反应,但在高分子化学领域中十分重要。高分子化学领域中十分重要。第33页/共297页2023/2/1734第二章第二章 高分子化学
21、高分子化学自由基聚合反应的特征(1)可分为链引发、链增长、链终止等基元反应。各基元反应活化能相差很大。其中链引发反应速率最小,是控制聚合过程的关键。慢引发、快增长、速终止。(2)只有链增长反应使聚合度增加。从单体转化为大分子的时间极短,瞬间完成。不存在聚合度递增的中间状态(图21)。聚合度与聚合时间基本无关。第34页/共297页2023/2/1735第二章第二章 高分子化学高分子化学(3)单体浓度随聚合时间逐步降低,聚合物浓度逐步提高(图22)。延长聚合时间是为了提高单体转化率。(4)少量阻聚剂(0.010.1%)足以使自由基聚合终止。图21 自由基聚合中分子量与时间的关系图22 自由基聚合中
22、浓度与时间的关系第35页/共297页2023/2/1736第二章第二章 高分子化学高分子化学链引发反应 光能、热能、辐射能和引发剂均可作为引发源引发烯类单体的自由基聚合。其中以引发剂引发最为普遍。引发剂和引发作用一、引发剂种类一、引发剂种类(1)一般要求 分子结构上有弱键,容易分解成自由基的化合物。键的解离能100170kJ/mol,分解温度40100。第36页/共297页2023/2/1737第二章第二章 高分子化学高分子化学(2)偶氮类引发剂 代表品种:偶氮二异丁腈(AIBN)。使用温度:45 65,解离能105kJ/mol。优点:(1)分解只形成一种自由基,无诱导分解。(2)常温下稳定,
23、贮存安全。80以上会剧烈分解。第37页/共297页2023/2/1738第二章第二章 高分子化学高分子化学(3)有机过氧化类引发剂 最简单的过氧化物:过氧化氢。活化能较高,20kJ/mol,一般不单独用作引发剂。过氧化氢分子中一个氢原子被有机基团取代,称为“氢过氧化物”,两个氢原子被取代,称为“过氧化物”。均可用作自由基聚合引发剂。第38页/共297页2023/2/1739第二章第二章 高分子化学高分子化学 过氧化类引发剂的典型代表:过氧化二苯甲酰(BPO)。分解温度:6080,解离能124kJ/mol。BPO的分解分两步,第一步分解成苯甲酰自由基,第二步分解成苯基自由基,并放出CO2。第39
24、页/共297页2023/2/1740第二章第二章 高分子化学高分子化学(4)无机过氧化类引发剂 代表品种为过硫酸盐,如过硫酸钾(K2S2O8)和过硫酸铵(NH4)2S2O8。水溶性引发剂,主要用于乳液聚合和水溶液聚合。分解温度:6080,解离能109140kJ/mol。过硫酸钾和过硫酸铵的性质相近,可互换使用。第40页/共297页2023/2/1741第二章第二章 高分子化学高分子化学(4)氧化还原引发体系 将有机或无机过氧化物与还原剂复合,可组成氧化还原引发体系。优点:活化能低(4060kJ/mol),引发温度低(050),聚合速率大。有水溶性和油溶性氧化还原引发体系之分。前者用于乳液聚合和
25、水溶液聚合,后者用于溶液聚合和本体聚合。第41页/共297页2023/2/1742第二章第二章 高分子化学高分子化学(i)水溶性氧化还原引发体系 氧化剂:过氧化氢、过硫酸盐、氢过氧化物等。还原剂:无机还原剂(Fe2+、Cu+、NaHSO3、Na2SO3、Na2S2O3等)、有机还原剂(醇、铵、草酸、葡萄糖等)。第42页/共297页2023/2/1743第二章第二章 高分子化学高分子化学 组成氧化还原体系后,分解活化能大大降低。例如:过氧化氢:220kJ/mol;过氧化氢+亚铁盐:40kJ/mol 过硫酸钾:140kJ/mol;过硫酸钾+亚铁盐:50kJ/mol 异丙苯过氧化氢:125kJ/mo
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 高分子 化学
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内