全等三角形压轴题与分类解析.doc
《全等三角形压轴题与分类解析.doc》由会员分享,可在线阅读,更多相关《全等三角形压轴题与分类解析.doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .七年级下三角形综合题归类一、 双等边三角形模型1. (1)如图7,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC求AEB的大小;(2)如图8,OAB固定不动,保持OCD的形状和大小不变,将OCD绕着点O旋转(OAB和OCD不能重叠),求AEB的大小.CBOD图7AEBAODCE图82. 已知:点C为线段AB上一点,ACM,CBN都是等边三角形,且AN、BM相交于O. 求证:AN=BM 求AOB的度数。 若AN、MC相交于点P,BM、NC交于点Q,求证:PQAB。(中考题)ABCMNOPQ同类变式: 如图
2、a,ABC和CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论; (2)将图a中的CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由; (3)若将图a中的ABC绕点C旋转一定的角度,请你画出一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由.图c3. 如图9,若和为等边三角形,分别为的中点,易证:,是等边三角形 (1)当把绕点旋转到图10的位置时,是否仍然成立?若成立,请证明;若不成立,请说明理由;(2)当绕点旋转到图11的位置时,是否还是等边三角形?若是,请给出证明
3、,若不是,请说明理由图9 图10 图11图8同类变式:已知,如图所示,在和中,且点在一条直线上,连接分别为的中点(1)求证:;CENDABM图CAEMBDN图(2)在图的基础上,将绕点按顺时针方向旋转,其他条件不变,得到图所示的图形请直接写出(1)中的两个结论是否仍然成立. 4. 如图,四边形ABCD和四边形AEFG均为正方形,连接BG与DE相交于点H(1)证明:ABG ADE ;(2)试猜想BHD的度数,并说明理由;(3)将图中正方形ABCD绕点A逆时针旋转(0BAE 180),设ABE的面积CFGEDBAH为,ADG的面积为,判断与的大小关系,并给予证明5.已知:如图,是等边三角形,过边上
4、的点作,交于点,在的延长线上取点,使,连接(1)求证:;(2)过点作,交于点,请你连接,并判断是怎样的三角形,试证明你的结论二、 垂直模型(该模型在基础题和综合题中均为重点考察容)考点1:利用垂直证明角相等1. 如图,ABC中,ACB90,ACBC,AE是BC边上的中线,过C作CFAE,垂足为F,过B作BDBC交CF的延长线于D求证:(1)AECD; (2)若AC12 cm,求BD的长 2. (中考)如图(1), 已知ABC中, BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BDAE于D, CEAE于E 。 图(1) 图(2) 图(3)(1)试说明: BD=
5、DE+CE.(2) 若直线AE绕A点旋转到图(2)位置时(BDCE), 其余条件不变, 问BD与DE、CE的关系如何? 写出结论,可不说明理由。3. 直线CD经过的顶点C,CA=CBE、F分别是直线CD上两点,且(1)若直线CD经过的部,且E、F在射线CD上,请解决下面两个问题:如图1,若,则(填“”,“”或“”号);如图2,若,若使中的结论仍然成立,则与应满足的关系是;(2)如图3,若直线CD经过的外部,请探究EF、与BE、AF三条线段的数量关系,并给予证明ABCEFDDABCEFADFCEB图1图2图3考点2:利用角相等证明垂直1. 已知BE,CF是ABC的高,且BP=AC,CQ=AB,试
6、确定AP与AQ的数量关系和位置关系2. 如图,在等腰RtABC中,ACB=90,D为BC的中点,DEAB,垂足为E,过点B作BFAC交DE的延长线于点F,连接CF(1)求证:CD=BF;(2)求证:ADCF;(3)连接AF,试判断ACF的形状.拓展巩固:如图9所示,ABC是等腰直角三角形,ACB90,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:ADCBDEABCDEF图9(提示:对比此题的条件和上面那题的条件,对比此题的图形和上题的图像,有什么区别和联系?)3. 如图1,已知正方形的边在正方形的边上,连接,.(1)试猜想与有怎样的位置关系,并证明你的结论;(2)将
7、正方形绕点按顺时针方向旋转,使点落在边上,如图2,连接和.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.4.如图1,的边BC在直线上,且的边也在直线 上,边与边重合,且(1) 在图1中,请你通过观察、测量,猜想并写出与所满足的数量关系和位置关系;(2) 将沿直线向左平移到图2的位置时,交于点,连接.猜想并写出与所满足的数量关系和位置关系,请证明你的猜想;(3)将沿直线向左平移到图3的位置时,的延长线交的延长线于点Q,连结,你认为(2)中所猜想的与的数量关系和位置关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.l(1)AB(F)(E)CPABECFPQ(
8、2)lABECFPl(3)Q三、 等腰三角形(中考重难点之一)考点1:等腰三角形性质的应用1. 如图,中,是中点,与交于,与 交于求证:,2. 两个全等的含,角的三角板和三角板,如图所示放置,三点在一条直线上,连结,取的中点,连结试判断的形状,并说明理由压轴题拓展:(三线合一性质的应用)已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证当绕点旋转到和不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,又有怎样的数量关系?请写出你的猜想,不需证明提示:此题为上面题目的综合应用,思路与第一题相似。3. 已知:如图,
9、ABC中,ABC=45,CDAB于D,BE平分ABC,且BEAC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。(1) BF=AC (2) CE=BF (3)CE与BC的大小关系如何。考点2:等腰直角三角形(45度的联想)1. 如图1,四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与CBM的平分线BF相交于点F. 如图141,当点E在AB边的中点位置时: 通过测量DE,EF的长度,猜想DE与EF满足的数量关系是; 连接点E与AD边的中点N,猜想NE与BF满足的数量关系是; 请证明
10、你的上述两猜想. 如图142,当点E在AB边上的任意位置时,请你在AD边上找到一点N, 使得NE=BF,进而猜想此时DE与EF有怎样的数量关系并证明2. 在RtABC中,ACBC,ACB90,D是AC的中点,DGAC交AB于点G.(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与 CF,过点F作FHFC,交直线AB于点H求证:DG=DC判断FH与FC的数量关系并加以证明图1图2(2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,借助图2画出图形。在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变(本小题直接写出
11、结论,不必证明)同类变式:(期末考试原题哦)已知:ABC为等边三角形,M是BC延长线上一点,直角三角尺的一条直角边经过点A,且60角的顶点E在BC上滑动,(点E不与点B、C重合),斜边与ACM的平分线CF交于点F(1)如图(1)当点E在BC边得中点位置时猜想AE与EF满足的数量关系是.连结点E与边得中点,猜想和满足的数量关系是.请证明你的上述猜想;()如图()当点在边得任意位置时,和EF有怎样的数量关系,并说明你的理由?E四、 角平分线问题1. 如图:E在线段CD上,EA、EB分别平分DAB和CBA, AEB=90,设AD, BC,且满足(1)求AD和BC的长;(2)你认为AD和BC还有什么关
12、系?并验证你的结论;ACBDE(3)你能求出AB的长度吗?若能,请写出推理过程;若不能,请说明理由.2. 如图,OP是MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:(1)如图,在ABC中,ACB是直角,B=60,AD、CE分别是BAC、BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;(第23题图)OPAMNEBCDFACEFBD图图图(2)如图,在ABC中,如果ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。3.(市中考模
13、拟题)如图,在四边形中,平分,过作,并且,则等于多少?4. 如图,ABC中,AD平分BAC,DGBC且平分BC,DEAB于E,DFAC于F. (1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.五、中点问题1. 在ABC中,为的中点, 过点的直线交于,交的平行线于点。, 并交于点. 连结.(1)求证: ;(2)请猜想与的大小关系, 并加以证明2. 如右下图,在中,若,为边的中点求证:3. 已知中,为的延长线,且,为的边上的中线求证(提示:倍长中线试试)附加思考题:(此题有很好地思维训练价值,值得深入思考探究)以的两边、为腰分别向外作等腰和等腰,.连接,、分别是、的中点探究:
14、与的位置关系与数量关系如图 当为直角三角形时,与的位置关系是;线段与的数量关系是;将图中的等腰绕点沿逆时针方向旋转()后,如图所示,问中得到的两个结论是否发生改变?并说明理由1判断与说理(1)如图111,ADE中,AE=AD且AED=ADE,EAD=90,EC、DB分别平分AED、ADE,交AD、AE于点C、B,连接BC请你判断AB、AC是否相等,并说明理由;图111图112O(2)ADE的位置保持不变,将ABC绕点A逆时针旋转至图112的位置,AD、BE相交于O,请你判断线段BE与CD的关系,并说明理由图122图1212某课外学习小组在一次学习研讨中,得到如下两个命题:如图12-1,在正三角
15、形ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若BON = 60,则BM = CN.如图12-2,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若BON = 90,则BM = CN.图123图124学习小组成员根据上述两个命题运用类比的思想又提出了如下的命题:如图12-3,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若BON = 108,则BM = CN.(友情提示:正多边形的各边相等且各角也相等)(1)请你从、三个命题中选择一个说明理由;(2)请你继续完成下面的探索:图125如图12-4,在正n边形(n6)中,M、N
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 压轴 分类 解析
限制150内