新《试卷》【全国百强校word】河北省衡水中学2017届高三下学期第四周周测理数试题18.doc
《新《试卷》【全国百强校word】河北省衡水中学2017届高三下学期第四周周测理数试题18.doc》由会员分享,可在线阅读,更多相关《新《试卷》【全国百强校word】河北省衡水中学2017届高三下学期第四周周测理数试题18.doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 学子之家圆梦高考 客服QQ:2496342225衡水中学2016-2017学年度数学(理科)试卷周测4第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则的子集个数为( )A2 B 4 C 8 D162.如图,复平面上的点到原点的距离都相等,若复数所对应的点为,则复数(是虚数单位)的共轭复数所对应的点为( )A B C D3.下列四个函数中,在处取得极值的函数是( );A B C D4.已知变量满足:,则的最大值为( )A B C. 2 D45.执行如图所示的程序框图,输出的结果是( )A5 B 6
2、C.7 D86.两个等差数列的前项和之比为,则它们的第7项之比为( )A 2 B 3 C. D7.在某次联考数学测试中,学生成绩服从正态分布,若在内的概率为0.8,则落在内的概率为( )A0.05 B0.1 C. 0.15 D0.28.函数的部分图象如图所示,的值为( )A 0 B C. D9.若,则的值是( )A-2 B -3 C. 125 D-13110.已知圆:,圆:,椭圆:,若圆都在椭圆内,则椭圆离心率的范围是( ) A B C. D11.定义在上的函数对任意都有,且函数的图象关于成中心对称,若满足不等式,则当时,的取值范围是( )A B C. D12.正三角形的边长为2,将它沿高翻折
3、,使点与点间的距离为,此时四面体外接球表面积为( )A B C. D第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.一个几何体的三视图如图所示,该几何体体积为 14.已知向量与的夹角为,且,若且,则实数的值为 15.已知双曲线的半焦距为,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线的准线被双曲线截得的弦长是(为双曲线的离心率),则的值为 16.用表示自然数的所有因数中最大的那个奇数,例如:9的因数有1,3,9,10的因数有1,2,5,10,那么 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在锐角中,角所对的
4、边分别为,已知,(1)求角的大小;(2)求的面积18. 某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(1)当时,记甲型号电视机的“星级卖场”数量为,乙型号电视机的“星级卖场”数量为,比较的大小关系;(2)在这10个卖场中,随机选取2个卖场,记为其中甲型号电视机的“星级卖场”的个数,求的分布列和数学期望;(3)若,记乙型号电视机销售量的方差为,根据茎叶图推断为何值时,达到最小值(只需写出结论)19. 如图1,在边长为
5、4的菱形中,于点,将沿折起到的位置,使,如图2(1)求证:平面;(2)求二面角的余弦值;(3)判断在线段上是否存在一点,使平面平面?若存在,求出的值;若不存在,说明理由20. 如图,已知椭圆,点是它的两个顶点,过原点且斜率为的直线与线段相交于点,且与椭圆相交于两点(1)若,求的值;(2)求四边形面积的最大值21. 设函数(1)求函数的单调区间;(2)若函数有两个零点,求满足条件的最小正整数的值;(3)若方程,有两个不相等的实数根,比较与0的大小请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数),
6、在以坐标原点为极点,以轴正半轴为极轴的极坐标中,圆的方程为(1)写出直线的普通方程和圆的直角坐标方程;(2)若点的坐标为,圆与直线交于两点,求的值23. 选修4-5:不等式选讲(1)已知函数,求的取值范围,使为常函数;(2)若,求的最大值附加题:1.已知椭圆:,过点作圆的切线,切点分别为,直线恰好经过的右顶点和上顶点(1)求椭圆的方程;(2)如图,过椭圆的右焦点作两条互相垂直的弦设的中点分别为,证明:直线必过定点,并求此定点坐标;若直线的斜率均存在时,求由四点构成的四边形面积的取值范围2已知函数(为自然对数的底数,),(1)若,求在上的最大值的表达式;(2)若时,方程在上恰有两个相异实根,求实
7、根的取值范围;(3)若,求使的图象恒在图象上方的最大正整数3.2015男篮亚锦赛决赛阶段,中国男篮以9连胜的不败战绩赢得第28届亚锦赛冠军,同时拿到亚洲唯一1张直通里约奥运会的入场券,赛后,中国男篮主力易建联荣膺本届亚锦赛(最有价值球员),下表是易建联在这9场比赛中投篮的统计数据注:(1)表中表示出手次命中次;(2)(真实得分率)是衡量球员进攻的效率,其计算公式为:(1)从上述9场比赛中随机选择一场,求易建联在该场比赛中超过50%的概率;(2)从上述9场比赛中随机选择一场,求易建联在该场比赛中至少有一场超过60%的概率;(3)用来表示易建联某场的得分,用来表示中国队该场的总分,画出散点图如图所
8、示,请根据散点图判断与之间是否具有线性相关关系?结合实际简单说明理由试卷答案一、选择题1-5:CBCDB 6-10: BBACB 11、12:DA二、填空题13. 14. 1 15. 16. 三、解答题17.在中,由正弦定理,得:,即,又因为,解得,因为为锐角三角形,所以.(2)在中,由余弦定理,得,即,解得或,当时,因为所以角为钝角,不符合题意,舍去,当时,因为,且,所以为锐角三角形,符合题意,所以的面积18.(1)根据茎叶图,得甲组数据的平均数为,乙组数据的平均数为由茎叶图,如甲型号电视机的“星级卖场”的个数,乙型号电视机的“星级卖场”的个数,所以(2)由题意,的所有可能取值为0,1,2且
9、,所有的分布列为:所有.(3)解:当时,达到最小值.19.(1)证明:因为,所以,又因为,所以平面,所以.又因为,所以平面.(2)解:因为平面,所以,两两垂直,以分别为轴、轴和轴,如图建立空间直角坐标系,易知,则,所以,.平面的一个法向量为,设平面的法向量为,由,得,令,得,所以.由图,得二面角为钝二面角,所以二面角的余弦值为.(3)结论:在线段上不存在一点,使平面平面.解:假设在线段上存在一点,使平面平面.设,则,.设平面的法向量为,由,得令,得.因为平面平面.所以,即,解得:因为,所以在线段上不存在点,使得平面平面.20.(1)依题意得椭圆的顶点,则直线方程分别为,设的方程为,如图,设,其
10、中,联立直线与椭圆的方程消去得方程,故由,知,得由在上知,得所以,化简得,解得或.(2)根据点到直线的距离公式知,点到的距离分别为,又,所以四边形的面积为当且仅当,即当时,取等号,所以的最大值为.21. (1)解:当时,函数在上单调递增,函数的单调增区间为当时,由,得;由,得.所以函数的单调增区间为,单调减区间为. (2)解:由(1)得,若函数有两个零点则,且的最小值,即.因为,所以.令,显然在上为增函数,且,所以存在,.当时,;当时,.所以满足条件的最小正整数(3)证明:因为是方程的两个不等实根,由(1)知.不妨设,则,.两式相减得,即所以.因为,当时, 当x时,故只要证即可,即证明,即证明
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 试卷 全国百强校word 全国 百强校 word 河北省 衡水 中学 2017 届高三 下学 第四 周周 测理数 试题 18
限制150内