新《高考试卷》2023年北京文数高考试题答案8.doc
《新《高考试卷》2023年北京文数高考试题答案8.doc》由会员分享,可在线阅读,更多相关《新《高考试卷》2023年北京文数高考试题答案8.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2017年普通高等学校招生全国统一考试数学(文)(北京卷)答案一、(1)C(2)B(3)C(4)D(5)B(6)D(7)A(8)D二、(9)(10)2(11)(12)6(13)(答案不唯一)(14)612三、(15)(共13分)解:()设等差数列an的公差为d.因为a2+a4=10,所以2a1+4d=10.解得d=2.所以an=2n1.()设等比数列的公比为q.因为b2b4=a5,所以b1qb1q3=9.解得q2=3.所以.从而.(16)(共13分)解:().所以的最小正周期.()因为,所以.所以.所以当时,.(17)(共13分)解:()根据频率分布直方图可知,样本中分数不小于70的频率为,所
2、以样本中分数小于70的频率为.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.()根据题意,样本中分数不小于50的频率为,分数在区间内的人数为.所以总体中分数在区间内的人数估计为.()由题意可知,样本中分数不小于70的学生人数为,所以样本中分数不小于70的男生人数为.所以样本中的男生人数为,女生人数为,男生和女生人数的比例为.所以根据分层抽样原理,总体中男生和女生人数的比例估计为.(18)(共14分)解:(I)因为,所以平面,又因为平面,所以.(II)因为,为中点,所以,由(I)知,所以平面.所以平面平面.(III)因为平面,平面平面,所以.因为为的中点,所以,.由(
3、I)知,平面,所以平面.所以三棱锥的体积.(19)(共14分)解:()设椭圆的方程为.由题意得解得.所以.所以椭圆的方程为.()设,则.由题设知,且.直线的斜率,故直线的斜率.所以直线的方程为.直线的方程为.联立解得点的纵坐标.由点在椭圆上,得.所以.又,所以与的面积之比为.(20)(共13分)解:()因为,所以.又因为,所以曲线在点处的切线方程为.()设,则.当时,所以在区间上单调递减.所以对任意有,即.所以函数在区间上单调递减.因此在区间上的最大值为,最小值为.更多 2017高考 信息查询 (在文字上按住ctrl即可点击查看)2017年高考作文题目及点评2017年全国高考真题及答案2017年高考成绩查询入口2017年全国各地各批次控制分数线2017年全国高校最低录取分数线 【高考帮APP出品】2017高考一站式解决方案 5 / 5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考试卷 高考 试卷 2023 北京 试题答案
限制150内