2020年高考理科数学新课标必刷试卷二(含解析)-高考数学新课标.docx
《2020年高考理科数学新课标必刷试卷二(含解析)-高考数学新课标.docx》由会员分享,可在线阅读,更多相关《2020年高考理科数学新课标必刷试卷二(含解析)-高考数学新课标.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2020年高考理科数学新课标必刷试卷二(含解析):高考数学新课标 2020年高考必刷卷(新课标卷)02数学(理)(本试卷满分150分,考试用时120分钟)注意事项: 1答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。 2作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑; 如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。 3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上; 如需改动,先划掉原来的答案,然后再写上新答案; 不准使用铅笔和涂改液
2、。不按以上要求作答无效。 4考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 第卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1设i是虚数单位,如果复数的实部与虚部互为相反数,那么实数a的值为()ABC3D3【答案】C【解析】因为,由实部与虚部是互为相反数得,解得,故选C.考点:复数的概念与运算.2已知集合,则ABCD【答案】A【解析】,选A.3已知,则()ABCD【答案】B【解析】【分析】首先得到,即,根据对数的运算法则可得,即,进而可得,通过作差比较可得,综合可得结果.【详解】因为,所以,因为,即,又,所
3、以,又,所以,所以,故选B【点睛】本题主要考查了利用不等式的性质比较大小,判断出的符号以及根据对数的运算的性质得到是解题的关键,属于中档题.4下列四个命题中错误的是()A回归直线过样本点的中心B两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C在回归直线方程k,当解释变量每增加1个单位时,预报变量平均增加0.2个单位D若,(常数),则点的轨迹是椭圆【答案】D【解析】A.回归直线过样本点的中心,正确; B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1,正确; C.在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位,正确; D.若,则点的轨迹是椭
4、圆,因为当时,4,的轨迹是线段,故错误,所以选D.5函数的部分图象大致为()ABCD【答案】B【解析】【分析】根据函数的奇偶性和在时函数值的特点,对选项进行排除,由此得出正确选项.【详解】因为是偶函数,所以排除A,C,当时,恒成立,所以排除D.故选:B.【点睛】本题考查函数的图像与性质,考查数形结合的数学思想以及推理论证能力.6若表示空间中两条不重合的直线,表示空间中两个不重合的平面,则下列命题中正确的是()A若,则B若,则C若,则D若,则【答案】C【解析】【分析】利用空间位置关系的判断及性质定理进行判断或举反例判断【详解】对于A,若n平面,显然结论错误,故A错误; 对于B,若m,n,则mn或
5、m,n异面,故B错误; 对于C,若mn,m,n,则,根据面面垂直的判定定理进行判定,故C正确; 对于D,若,m,n,则m,n位置关系不能确定,故D错误故选:C【点睛】本题考查了空间线面位置关系的性质与判断,属于中档题7莱茵德纸草书是世界上最古老的数学著作之一,书中有一道这样的题目:把120个面包分给5个人,使每人所得成等差数列,且使较多的三份之和的是较少的两份之和,则最少的一份面包个数为()A46B12C11D2【答案】B【解析】【分析】将问题转化为等差数列的问题,通过和,求解出即可.【详解】设每个人所得面包数,自少而多分别为:且成等差数列由题意可知:,设公差为,可知: 所以最少的一份面包数为
6、本题正确选项: 【点睛】本题考查利用等差数列求解基本项的问题,关键在于将文字描述的内容转化为等差数列中的关系式,利用通项公式和求和公式求解出基本项.8已知函数的最小正周期为,且,则的一个对称中心坐标是ABCD【答案】A【解析】试题分析:由的最小正周期为,得因为,所以,由,得,故令,得,故的对称中心为,当时,的对称中心为,故选A考点:三角函数的图像与性质9在中,D为BC中点,O为AD中点,过O作一直线分别交AB、AC于M、N两点,若(),则()A3B2C4D【答案】C【解析】【分析】根据向量的线性运算,得,利用共线向量的条件得出,化简即可得到的值,即可求解.【详解】在中,为的中点,为的中点,若,
7、所以,因为,所以,即,整理得,故选C.【点睛】本题主要考查了向量的线性运算性质,以及向量的共线定理和三角形的重心的性质的应用,其中解答中熟记向量的线性运算,以及向量的共线定理的应用是解答的关键,着重考查了推理与运算能力,属于基础题.10的三个内角A,B,C的对边分别为a,b,c,若的面积为S,且,则等于ABCD【答案】D【解析】,而,所以,又根据,即,解得(舍)或,解得,故选D.11在九章算术中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马如图,若四棱锥PABCD为阳马,侧棱PA底面ABCD,PAABAD,E为棱PA的中点,则异面直线AB与CE所成角的正弦值为()ABCD【答案】B【解
8、析】【分析】由异面直线所成角的定义及求法,得到为所求,连接,由为直角三角形,即可求解【详解】在四棱锥中,可得即为异面直线与所成角,连接,则为直角三角形,不妨设,则,所以,故选:B【点睛】本题主要考查了异面直线所成角的作法及求法,其中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题12设奇函数的定义域为,且的图像是连续不间断,有,若,则的取值范围是()ABCD【答案】D【解析】【分析】设g(x),通过研究导函数及函数的奇偶性,可判断g(x)在x上为奇函数且单调递减,利用性质解得不等式即可【详解】令,则.因为,有,当时,则在上单调递减.又是定义域在上的奇函
9、数,则也是上的奇函数并且单调递减.又等价于,即,又,.故选:D【点睛】本题考查了运用导数判断函数的单调性及应用,考查了函数奇偶性的应用,考查了构造法的技巧,属于中档题第卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。 13两个非零向量满足,则向量与的夹角为_.【答案】【解析】【分析】利用向量的模的平方等于向量的平方,求得两个向量的关系,再利用向量的数量积和向量的夹角公式,即可求解.【详解】由题意,两个非零向量满足,可得即,解得,又由,可得,即,解得,即,所以,由向量的夹角公式,可得,又由,所以,即向量与的夹角为.故答案为:.【点睛】本题主要考查了向量的数
10、量积的运算,以及向量的模和向量的夹角的求解,其中解答中熟记向量的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.14如图所示,程序框图(算法流程图)的输出结果为_.【答案】1112【解析】试题分析:第一次循环s=12,n=4,第二次循环:s=12+14,n=6,第三次循环:s=12+14+16,n=8,结束循环,输出s=1112考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求
11、项.15如图,已知抛物线与双曲线(a0,b0)有相同的焦点F,双曲线的焦距为2c,点A是两曲线的一个交点,若直线AF的斜率为,则双曲线的离心率为_【答案】.【解析】【分析】设双曲线的另外一个焦点为,先求出AF=4c,再利用余弦定理求出,根据双曲线的定义得到即得离心率的值.【详解】如图所示,设双曲线的另外一个焦点为,由于AF的斜率为,所以且AFAB,所以ABF是等边三角形,所以,所以,所以,所以,由双曲线的定义可知,所以双曲线的离心率为【点睛】(1)本题主要考查抛物线和双曲线的简单几何性质,考查解三角形,意在考查学生对这些知识的掌握水平和分析推理转化能力.(2)圆锥曲线的离心率常见的有两种方法:
12、公式法和方程法.公式法就是先根据已知条件求出和,或者的关系,再代入离心率的公式化简求解.方程法就是把已知的等式化简可以得到一个关于和的方程,再把该方程化为关于离心率的一次或二次方程,直接计算出离心率.16已知对于区间内的任意两个相异实数,恒有成立,则实数的取值的集合是_【答案】【解析】【分析】先判断出单调性,令,去掉绝对值,然后构造新函数,将问题转化为在内单调递减,即在上恒成立,参变分离,得到的取值范围.【详解】函数,其定义域为,所以恒成立,故函数在定义域上为增函数.令,则,所以由可得,即,设,则则问题等价于函数在内单调递减,于是在上恒成立,即在上恒成立,则,即.又所以这样的实数不存在【点睛】
13、本题主要考查函数导数与单调性,考查构造函数法和分离常数法求解不等式恒成立问题.其中解答中涉及到利用导数研究函数的单调性以及单调性的应用、函数的奇偶性及其应用、不等关系的求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化思想的应用.属于中档题.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必做题,每个考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17已知数列的前项和为,且满足(1)求数列的通项; (2)求数列的前项和为【答案】(1); (2)【解析】分析:(1)先化简已知,再用项和公式求
14、出数列的通项.(2)利用错位相减法求数列的前项和为.详解:(1),即; 当时,当时,不满足上式,所以数列是从第二项起的等比数列,其公比为2; 所以.(2)当时,当时,点睛:(1)本题主要考查数列通项的求法和错位相减法求和,意在考查学生对这些基础知识的掌握能力和计算能力.(2)已知的关系,可以利用项和公式,求数列的通项.注意结果是能并则并,不并则分.所以本题中,不能合在一起.18如图,四边形是矩形,平面.(1)证明:平面平面; (2)求二面角的余弦值.【答案】(1)证明见解析; (2).【解析】试题分析: (1)由题意结合题意可证得平面,结合面面垂直的判断定理可得平面平面; (2)建立空间直角坐
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年高 理科 数学 新课 标必刷 试卷 解析 高考
限制150内