《试卷》【全国百强校】河北省衡水中学2017届高三上学期第五次调研考试(12月)理数试题解析(解析版)18.doc
《《试卷》【全国百强校】河北省衡水中学2017届高三上学期第五次调研考试(12月)理数试题解析(解析版)18.doc》由会员分享,可在线阅读,更多相关《《试卷》【全国百强校】河北省衡水中学2017届高三上学期第五次调研考试(12月)理数试题解析(解析版)18.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 学子之家圆梦高考 客服QQ:2496342225第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,则图中阴影部分表示的集合为( )A B C D【答案】A考点:1.集合的图形表示;2.集合的运算.2. 已知为虚数单位,图中复平面内的点表示复数,则表示复数的点是( )A B C D【答案】D【解析】试题分析:由图可知,所以,即复数的点是,故选D.考点:1.复数的几何意义;2.复数的运算.3. 如图所示,墙上挂有边长为的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投
2、镖.假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( )A B C D与的取值有关 【答案】A考点:几何概型.4. 某公司为确定明年投入某产品的广告支出,对近5年的广告支出与销售额(单位:百万元)进行了初步统计,得到下列表格中的数据:经测算,年广告支出与年销售额满足线性回归方程,则的值为( )A45 B50 C.55 D60【答案】D【解析】试题分析:由表格可知,所以,所以有,解得,故选D.考点:线性回归.5. 已知焦点在轴上的双曲线的中点是原点,离心率等于 .以双曲线的一个焦点为圆心,1为半径的圆与双曲线的渐近线相切,则双曲线的方程为( )A B C. D【
3、答案】C考点: 双曲线的标准方程与几何性质.6. 已知某几何体的三视图如图所示,则该几何体的体积为( )A B35 C. D【答案】C【解析】试题分析:由三视图可知,该几何体为一个三棱柱去掉两个三棱锥,三棱柱的底面为底与高皆为的等腰三角形,三棱柱的高为,两个三棱锥的底面底与高皆为的等腰三角形,高为,因此几何体的体积为 ,故选C.考点:1.三视图;2.多面体的表面积与体积.7. 公元263年左右,我国数学家刘徽发现当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了割圆术.利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设
4、计的程序框图,则输出的为( )(参考数据:,)A12 B24 C. 36 D4【答案】B考点:1.数学文化;2.程序框图.8. 如图,周长为1的圆的圆心在轴上,顶点,一动点从开始逆时针绕圆运动一周,记走过的弧长,直线与轴交于点,则函数的图象大致为( )A B C. D【答案】D【解析】试题分析:由图象可知,函数,由此知此函数是由的图象向右平移 个单位得到的,由选项可知D正确,故选D.考点:三角函数的图象与性质.9. 三棱锥的外接球为球,球的直径是,且,都是边长为1的等边三角形,则三棱锥的体积是( )A B C. D【答案】B考点:1.球的切接问题;2.棱锥的体积.10. 在中,角,的对边分别为
5、,且.若的面积,则的最小值为( )A B C. D3【答案】B考点:1.正弦定理与余弦定理;2.基本不等式.【名师点睛】本题综合考查解三角形与基本不等式,属中档题;利用正弦定理可以求解一下两类问题:(1)已知三角形的两角和任意一边,求三角形其他两边与角;(2)已知三角形的两边和其中一边的对角,求三角形其他边与角利用余弦定理主要解决已知两边及夹角求其它元素问题. 来源:学科网11. 已知直线与函数的图象恰好有3个不同的公共点,则实数的取值范围是( )A B C. D【答案】B【解析】试题分析:在直角坐标系内作出函数 的图象与直线的图象,当直线与相切时, ,由图可知,当直线与函数的图象恰好有3个不
6、同的公共点时,故选B.学科网考点:函数与方程.【名师点睛】本题考查函数与方程,属中档题;已知函数有零点(方程有根)求参数取值范围常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解12. 已知直线分别与函数和交于两点,则之间的最短距离是( )A B C. D【答案】D考点:导数与函数的单调性、极值、最值.【名师点睛】本题考查导数与函数的单调性、极值、最值,属难题;利用导数求函数的最值是每年高考的重点内容,
7、求函数在闭区间上的最值,先研究函数的单调性,若函数在该区间上单调,则两端点的值即为最值,若在区间上有极值,比较极值与两端点的值即可求其最值.第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)来源:Zxxk.Com来源:Z*xx*k.Com13. 若的展开式中含有常数项,则的最小值等于_.【答案】 考点:二项式定理.14. 已知抛物线方程为,焦点为,是坐标原点,是抛物线上的一点,与轴正方向的夹角为,若的面积为,则的值为_.【答案】 【解析】试题分析:抛物线的焦点为,准线为,设,则,又因为 ,所以,所以,代入得,解之得或,又当时,与轴正方向的夹角为,不符合题意,所以.考点:抛物
8、线的标准方程及几何性质.15. 在送医下乡活动中,某医院安排甲、乙、丙、丁、戊五名医生到三所乡医院工作,每所医院至少安排一名医生,且甲、乙两名医生不安排在同一医院工作,丙、丁两名医生也不安排在同一医院工作,则不同的分配方法总数为_.【答案】 考点:1.两个计数原理;2.排列与组合.【名师点睛】本题考查两个计数原理与排列与组合,属中档题;涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取通常用直接法分类复杂时,考虑逆向思维,用间
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 试卷 全国百强校 全国 百强校 河北省 衡水 中学 2017 届高三 上学 第五 调研 考试 12 试题 解析 18
链接地址:https://www.taowenge.com/p-77782164.html
限制150内