小学数学知识点例题精讲《长方体与正方体(一)》学生版.docx
《小学数学知识点例题精讲《长方体与正方体(一)》学生版.docx》由会员分享,可在线阅读,更多相关《小学数学知识点例题精讲《长方体与正方体(一)》学生版.docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、长方体与正方体(一)对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查例题精讲如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形)长方体的表面积和体积的计算公式是:长方体的表面积:;长方体的体积:正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形如果它的棱长为,那么:,板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?【巩固】右图
2、中共有多少个面?多少条棱?【例 2】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 3】 如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【例 4】 如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【例 5】 右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长
3、l厘米的正方体,做成一种玩具它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【例 6】 如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【例 7】 下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为厘米,那么最后得到的立体图形的表面积是多少平方厘米? 【例 8】 从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米
4、的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【例 9】 一个正方体木块,棱长是15从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体这个木块剩下部分的表面积最少是多少?【例 10】 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米【巩固】一个长、宽、高分别为厘米、厘米、厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【例 11】 一个正方体木块,棱长是1米,沿着水平方向将它
5、锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少? 【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块那么,这60块长方体表面积的和是多少平方米?【巩固】一个表面积为的长方体如图切成27个小长方体,这27个小长方体表面积的和是 【例 12】 右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【例 13】 有个同样大小的正方体,将它们堆成一个长方体,这个
6、长方体的底面就是原正方体的底面如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么为多少?【例 14】 边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【例 15】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少? 【例 16】 由六个棱长为1的小正方体拼成如图所示立体,它的表面积是 【例 17】 将个棱长为的正方体堆放在桌子上,喷上红色后再将它们分开.涂上红色的部分,面积是( )平方厘米【例 18】 用6块右图所示(单位:cm)的长方体木块拼成一个大长方体,有许多
7、种拼法,其中表面积最小的是多少平方厘米?最大是多少平方厘米?【巩固】用10块长5厘米,宽3厘米,高7厘米的长方体积木堆成一个长方体,这个长方体的表面积最小是多少?【例 19】 要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?当 b2h时,如何打包?当 b2h时,如何打包?当 b2h时,如何打包?【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【例 20】 如图,把正方体用两个与它的底面平行的平面切开,分成三个长方体,这三个长方体的表面积比是3:4:5时,用最简单的整数比表示这三个长方体的体积比: :
8、: .【例 21】 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积【巩固】如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?【例 22】 如图,棱长分别为厘米、厘米、厘米、厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_平方厘米【例 23】 如图,用若干个体积相同的小正方体堆积成一个大正方体,要使大正方体的对角线(正方体八个顶点中距离最远的两个顶点的连线)穿过的小正方体都是黑色的,其余小正方体都是白色的,并保证大正方体每条边上有偶数个小正方
9、体.当堆积完成后,白色正方体的体积占总体积的93.75%,那么一共用了多少个黑色的小正方体?【例 24】 边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?【巩固】按照上题的堆法一直堆到层(),要想使总表面积恰好是一个完全平方数,则的最小值是多少?【例 25】 把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?【例 26】 现有一个棱长为1厘米的正方体,一个长宽为1厘米高为2厘米的长方体,三个长宽为1厘米高为3
10、厘米的长方体下列图形是把这五个图形合并成某一立体图形时,从上面、前面、侧面所看到的图形试利用下面三个图形把合并成的立体图形(如例)的样子画出来,并求出其表面积例:【例 27】 将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的小正方形只有3个,求原来长方体的表面积是多少平方厘米?【例 28】 有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色求被涂成红色的表面积【例 29】 有一塔形几何体由若干个正方体构成,构成方式如下图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点已知最底层正方体的棱长为2,且该塔形的表面积(含最底
11、层正方体的底面面积)超过39,则该塔形中正方体的个数至少是_【例 30】 如图,这是一个用若干块体积相同的小正方体粘成的模型把这个模型的表面(包括底面)都涂成红色,那么,把这个模型拆开以后,有三面涂上红色的小正方体比有两面涂上红色的小正方体多_ 块【例 31】 小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图1所示,从上面看如图2,那么这个几何体至少用了块木块 【例 32】 小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图2所示,从上面看如图3所示,那么这个几何体至少用了 块木块【例 33】 右图是正方体,如果将其表面涂成红色,那么其中一面、二面、三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 长方体与正方体一 小学 数学 知识点 例题 长方体 正方体 学生
限制150内