小学数学知识点例题精讲《鸡兔同笼问题(二)》教师版.docx
《小学数学知识点例题精讲《鸡兔同笼问题(二)》教师版.docx》由会员分享,可在线阅读,更多相关《小学数学知识点例题精讲《鸡兔同笼问题(二)》教师版.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、6-1-9.鸡兔同笼问题(二)教学目标1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象知识精讲一、鸡兔同笼这个问题,是我国古代著名趣题之一大约在年前,孙子算经中就记载了这个有趣的问题书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有个头;从下面数,有只脚求笼中各有几只鸡和兔? 你会解答这个问题吗?你想知道孙子算经中是如何解答这个问题的吗? 二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独
2、脚鸡”,每只兔就变成了“双脚兔”这样,鸡和兔的脚的总数就由只变成了只;如果笼子里有一只兔子,则脚的总数就比头的总数多因此,脚的总只数与总头数的差,就是兔子的只数,即(只)显然,鸡的只数就是(只)了 这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已除此之外,“鸡兔同笼”问题的经典思路“假设法”假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数鸡兔总数-实际脚数)(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-
3、每只鸡脚数鸡兔总数)(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法例题精讲两个量的“鸡兔同笼”问题变例【例 1】 某次数学竞赛,共有道题,每道题做对得分,没做或做错都要扣分,小聪得了分,他做对了多少道题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 做错 (道),因此,做对的 (道)【答案】道【巩固】 数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天
4、在这次数学竞赛中得了60分,他做对了几道题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 假设他将所有题全部做对了,则可得100分,实际上只得了60分,比假设少了40分,做错一题要少得8分,少得的40分中,有多少个8分,就是他做错的题的数量,则知他做对了15道【答案】道【巩固】 东湖路小学三年级举行数学竞赛,共道试题.做对一题得分,没有做一题或做错一题都要倒扣分.刘钢得了分,问他做对了几道题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 这道题也类似于“鸡兔同笼”问题假设刘钢道题全对,可得分(分),但他实际上只得分,少了(分)
5、,因此他没做或做错了一些题由于做对一道题得分,没做或做错一道题倒扣分,所以没做或做错一道题比做对一道题要少(分)分中含有多少个,就是刘钢没做或做错多少道题所以,刘钢没做或做错题为(道),做对题为(道)【答案】道【巩固】 某次数学竞赛,试题共有道,每做对一题得分,每做错一题倒扣分.小红最终得分,做对的题比做错的题多_道.【考点】鸡兔同笼问题 【难度】3星 【题型】填空【关键词】学而思杯,3年级,第8题,假设思想方法【解析】 ,做错道题,做对道题,对的比错的多道.【答案】多道【巩固】 次数学竞赛有道试题,若小宇得70分,根据图5中两人的对话可知小宇答对_题.【考点】鸡兔同笼问题 【难度】3星 【题
6、型】填空【关键词】希望杯,五年级,一试,第12题【解析】 设答对了道题,那么,所以,也就是小宇答对了8道题.【答案】题【巩固】 一次口算比赛,规定:答对一题得8分,答错一题扣5分.小华答了18道题,得92分,小华在此次比赛中答错了_ 道题.【考点】鸡兔同笼问题 【难度】3星 【题型】填空【关键词】希望杯,四年级,二试,第12题【解析】 假设他全答对了,应该的188=144分,实际上少了144-92=52分,每答错一道题少8+5=13分,答错了5213=4道题.【答案】题【例 2】 某工人与老板签订了一份30天的劳务合同:工作一天可得报酬48元,休息一天则要从所得报酬中扣掉12元.该工人合同到期
7、后并没有拿到报酬,则他最多工作了_天.【考点】和倍问题 【难度】3星 【题型】填空【关键词】希望杯,四年级,二试,第5题【解析】 方法一:假设他没有休息他会得(元),休息一天会少(元),所以他休息了(天),他工作了天方法二:工作一天休息4天刚好抵消,那么最后没拿到钱,他只工作了30(4+1)=6天.【答案】天【例 3】 春风小学3名云参加数学竞赛,共10道题,答对一道题得10分,答错一道题扣3分,这3名同学都回答了所有的题,小明得了87分,小红得了74分,小华得了9分,他们三人一共答对了_道题.【考点】鸡兔同笼问题 【难度】3星 【题型】填空【关键词】假设思想方法【解析】 三人共得(分),比满
8、分(分)少(分)因此三个人共做错:(道)题,共答对了(道)题【答案】【例 4】 张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发扣12分,两人各射了10发,共得208分,其中张明比李华多64分,则张明射中_发.【考点】鸡兔同笼问题 【难度】3星 【题型】填空【关键词】希望杯,4年级,1试【解析】 张明得分(20864)2136分,根据鸡兔同笼,张明脱靶(2010136)(2012)2,射中8发.【答案】发【巩固】 小明和小刚进行数学解题能力对抗赛,两人商定,对一题得20分,不答或答错一题扣12分.两人各解答了10道题,一共得208分,又知道小明比小刚多得64分.那么小刚做对了 道题
9、.【考点】鸡兔同笼问题 【难度】3星 【题型】填空【关键词】迎春杯,高年级,初试,10题【解析】 小刚得了(分),如果小刚道题都做对了,应得分,实际得分,所以错了(道),做对了(道).【答案】道【巩固】 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分? 【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 法一:如果小明第一次测验24题全对,得(分).那么第二次只做对(题)得分是(分).两次
10、相差(分).比题目中条件相差10分,多了80分.说明假设的第一次答对题数多了,要减少.第一次答对减少一题,少得(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加分.两者两差数就可减少(分).(题).因此,第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对(题).第一次得分.第二次得分.法二:答对30题,也就是两次共答错(题).第一次答错一题,要从满分中扣去(分),第二次答错一题,要从满分中扣去(分).答错题互换一下,两次得分要相差 (分).如果答错9题都是第一次,要从满分中扣去.但两次满分都是120分.比题目中条件“第一次得分多10分”,要少了.因此,第二
11、次答错题数是(题).第一次答错(题).第一次得分(分).第二次得分 (分).【答案】第一次得分分.第二次得分分.【例 5】 某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40元,如果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各买各的少花120元,问这个旅游团一共有多少人? 【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 每个三口之家可以少花(元),每个二口之家可以少花(元),如果这8个家庭都是三口之家,那么一共少花(元)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鸡兔同笼问题二 小学 数学 知识点 例题 问题 教师版
限制150内