圆锥曲线定义的应用.ppt
《圆锥曲线定义的应用.ppt》由会员分享,可在线阅读,更多相关《圆锥曲线定义的应用.ppt(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、复习圆锥曲线的定义一、复习圆锥曲线的定义1 1、椭圆的第一定义与第二定义、椭圆的第一定义与第二定义2 2、双曲线的第一定义与第二定义、双曲线的第一定义与第二定义3 3、抛物线的定义、抛物线的定义二、经典回顾二、经典回顾1、已知动圆、已知动圆M 和圆和圆内切内切,并和圆并和圆 外切外切,动圆动圆圆心圆心M 的轨迹方程的轨迹方程为为;2、若动圆过定点、若动圆过定点A(-3,0),且和定圆且和定圆 外切,动圆圆心外切,动圆圆心P 的轨的轨迹方程迹方程为为;3、若点、若点P 到点到点F(4,0)的距离比它到定直线的距离比它到定直线x+5=0 的距离小的距离小1,则点,则点P 的的轨迹方程是轨迹方程
2、是.4、已知椭圆已知椭圆中中F1,F2 分分别为其别为其左、右焦点和点左、右焦点和点A,试在试在椭圆上找一点椭圆上找一点 P使使(1)取得最小值取得最小值;(2)取得最小值取得最小值.AF1F2xyoPP5、已知双曲线已知双曲线 F1,F2 为左、右焦点,点为左、右焦点,点A(3,-1),在双曲线上在双曲线上求一点求一点P,使使(1)取得最小值取得最小值;(2)取得最小值取得最小值.xyoAF1F2PPP6、若点、若点A 的坐标为(的坐标为(3,2),),F 为抛为抛物线物线 的焦点,点的焦点,点M 在抛物线上移在抛物线上移动时,求动时,求|MA|+|MF|的最小值,并求这时的最小值,并求这时
3、M 的坐标的坐标.xyolFAMdN 7、已知双曲线、已知双曲线过左焦点过左焦点F1 作一弦与左支相交于作一弦与左支相交于A,B两点,若两点,若|AB|=m,求求F2 AB的周长的周长.xyoF1ABF2三、规律总结三、规律总结2、涉及椭圆双曲线上的点与两个焦点构、涉及椭圆双曲线上的点与两个焦点构成的三角形问题,常用第一定义结合正、成的三角形问题,常用第一定义结合正、余弦定理来解决余弦定理来解决.3、涉及焦点、准线、离心率、圆锥曲线上、涉及焦点、准线、离心率、圆锥曲线上的点中的三者,常用统一定义解决问题的点中的三者,常用统一定义解决问题.1、在求轨迹方程时先利用定义判断曲线、在求轨迹方程时先利
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 定义 应用
限制150内