半导体的光学常数(共8页).doc
《半导体的光学常数(共8页).doc》由会员分享,可在线阅读,更多相关《半导体的光学常数(共8页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第l0章 半导体的光电特性 本章讨论光和半导体相互作用的一般规律,用光子与晶体中电子、原子的相互作用来研究半导体的光学过程、重点讨论光吸收、光电导和发光,以及这些效应的主要应用。10.1 半导体的光学常数一、折射率和吸收系数(Refractive index & Absorption coefficient)固体与光的相互作用过程,通常用折射率、消光系数和吸收系数来表征。在经典理论中,早已建立了这些参数与固体的电学常数之间的固定的关系。1、折射率和消光系数(Extinction coefficient)按电磁波理论,折射率定义为式中,r和分别是光的传播介质的相对介电常
2、数和电导率,w是光的角频率。显然,当0时,N是复数,因而也可记为 (10-1)两式相比,可知 (10-2)式中,复折射率N的实部n就是通常所说的折射率,是真空光速c与光波在媒质中的传播速度v之比;k称为消光系数,是一个表征光能衰减程度的参量。这就是说,光作为一种电磁辐射,当其在不带电的、0的各问同性导电媒质中沿x方向传播时,其传播速度决定于复折射率的实部,为c/n;其振幅在传播过程中按exp(-kx/c)的形式衰减,光的强度I0则按exp(-2kx/c)衰减,即 (10-3)2、吸收系数光在介质中传播而有衰减,说明介质对光有吸收。用透射法测定光在介质中传播的衰减情况时,发现介质中光的衰减率与光
3、的强度成正比,即比例系数a的大小和光的强度无关,称为光的吸收系数。对上式积分得 (10-4)上式反映出a的物理含义是:当光在媒质中传播1/a距离时,其能量减弱到只有原来的1/e。将式(10-3)与式(10-4)相比,知吸收系数 (10-4)式中是自由空间中光的波长。3、光学常数n、k和电学常数的关系解方程组(10-2)可得; 式中,n、k、和er都是对同一频率而言,它们都是频率的函数。当0时,ne1/2,k0。这说明,非导电性介质对光没有吸收,材料是透明的;对于一般半导体材料,折射率n约为34。吸收系数a除与材料本身有关外,还随光的波长变化。a-1代表光对介质的穿透深度。对于吸收系数很大的情况
4、(例如,1105cm-1),光的吸收实际上集中在晶体很薄的表面层内。小结:光在导电媒质中的传播与光在电介质中的传播相似。所不同的是:在电介质中,电磁波的传播没有衰减;而在导电媒质中,如在半导体和金属内,波的振幅随着透入的深度而减小、即存在光的吸收。这是由于导电媒质内部有自由电子存在,波在传播过程中在媒质内激起传导电流,光波的部分能量转换为电流的焦耳热。因此,导电媒质的吸收系数决定于电导率。二、反射率、吸收率和透射率一个界面对入射光的反射率R定义为反射能流密度与入射能流密度之比,透射率T定义为透射能流密度与入射能流密度之比。按能量守恒,同一界面必有RT1。定义一个物体对入射光的透射率T为透出物体
5、的能流密度与入射物体能流密度之比。按能量守恒 ,必有RTA1,A即为吸收率。1、光在界面的反射与透射(注意纠正参考书中“系数”和“率”的混乱)当光波(电磁波)照射到物体界面时,必然发生反射和折射。一部分光从界面反射,另一部分则穿透界面进入物体。当光从空气垂直入射于折射率为N=n-ik的物体界面时,反射率对于吸收性很弱的材料,k很小,反射率R只比纯电介质的稍大;但折射率较大的材料,其反射率也较大。譬如n=4时,其反射率接近40。在界面上,除了光的反射外,还有光的透射。规定透射率T为透射能流密度和入射能流密度之比。由于能量守恒,在界面上透射系数和反射系数满足关系T1R。2、有一定厚度的物体对光的吸
6、收图10-1反射和透射示意图如图10-1所示,以强度为I0的光垂直入射空气中具有均匀厚度d和均匀吸收系数a的物体,物体前后界面(入射面和出射面)都会对入射光有反射和透射,反射率皆为R,但这两个界面各自的入射光强度显然不同。入射面的入射光强度为I0,反射光强度为RI0,透入物体的光强度是(1-R)I0;经过物体的吸收衰减之后到达出射界面的光的强度就是(1-R)I0exp(-d),最后透过出射面的光强度就应等于(1-R)2I0exp(-d)。不考虑光在物体中的多次反射,则厚度为d的均匀吸收体对入射光的透射率按定义可得考虑光在两界面之间的多次反射之后,容易证明(作业):10.2 半导体的光吸收材料吸
7、收辐射能导致电子从低能级跃迁到较高的能级或激活晶格振动。半导体有多种不同的电子能级和晶格振动模式,因而有多种不同的光吸收机构,不同吸收机构通常对应不同辐射波长,具有不同的吸收系数。半导体中导致电子从低能带跃迁到高能带的吸收,不同于孤立原子中电子从低能级向高能级跃迁的吸收。孤立原子中的能级是不连续的,两能级间的能量差是定值,因而电子在其间的跃迁只能吸收一个确定能量的光子,出现的是吸收线;而在半导体中,与原子能级相对应的是个由很多能级组成的能带,这些能级实际上是连续分布的,因而光吸收也就表现为连续的吸收带。一、本征吸收价带电子吸收光子能量向高能级跃迁是半导体中最重要的吸收过程。其中,吸收能量大于或
8、等于禁带宽度的光子使电子从价带跃迁入导带的过程被称为本征吸收。1、本征吸收过程中的能量关系理想半导体在绝对零度时,价带内的电子不可能被热激发到更高的能级。唯一可能的激发是吸收一个足够能量的光子越过禁带跃迁入空的导带,同时在价带中留下一个空穴,形成电子空穴对,即本征吸收。本征吸收也能在非零温度下发生。发生本征吸收的条件是 (10-5)h0是能够引起本征吸收的最低限度光子能量。因此,对于本征吸收光谱,在低频方面必然存在一个频率界限0 (或说在长波方面存在一个波长界限0)。当频率低于0或波长大于0时,不可能产生本征吸收,吸收系数迅速下降。吸收系数显著下降的特定波长0(或特定频率0)称为半导体的本征吸
9、收限。图10-2给出几种半导体材料的本征吸收系数和波长的关系,曲线短波端陡峻地上升标志着本征吸收的开始。根据式(10-5),并应用关系式=c/,可得出本征吸收的长波限0(单位为mm)与材料禁带宽度Eg(单位为eV)的换算关系为利用此换算关系可根据禁带宽度算出半导体的本征吸收长波限。例如,Si(Eg=1.12eV)的01.1mm;GaAs(Eg=1.43eV)的00.867mm,两者的吸收限都在红外区;CdS(Eg=2.42eV)的00.513mm,在可见光区。图10-3是几种常用半导体材料本征吸收限和禁带宽度的对应关系。图10-2 本征吸收曲线图10-3 Eg和0的对应关系2、本征吸收过程中的
10、选择定则在光照下,电子因吸收光子的跃迁过程,除了能量必须守恒外,还必须满足准动量守恒。设电子跃迁的初、末两态的波矢分别为k和k,则准动量守恒可表示为如下条件hk-hk=光子动量由于在半导体中参与电子跃迁的光子的动量远小于电子的动量,可忽略不计,上式可近似为这说明,电子因吸收光子而发生的跃迁基本上没有波矢的改变,或说半导体中的电子只在没有明显波矢改变的两个状态之间才能发生只吸收光子的跃迁。这就是电子跃迁的选择定则。3、直接跃迁和间接跃迁1)直接跃迁和直接禁带半导体 参照图10-4所示的一维E(k)曲线可见,为了满足选择定则,吸收光子只能使处在价带中状态A的电子跃迁到导带中k相同的状态B。A与B在
11、E(k)曲线上位于同一竖直线上。这种跃迁称为直接跃迁。在A到B的直接跃迁中所吸收的光子能量h与图中垂直距离相对应。显然,对应于不同的k,垂直距离各不相等。就是说,和任何一个k值相对应的导带与价带之间的能量差相当的光子都有可能被吸收,而能量最小的光子对应于电子从价带顶到导带底的跃迁,其能量即等于禁带宽度Eg。由此可见,本征吸收形成一个连续吸收带,并具有一长波吸收限0Egh。因而从光吸收谱的测量可以求出禁带宽度Eg。在常用半导体中,III-族的GaAs、InSb及-族等材料,导带极小值和价带极大值对应于相同的波矢,常称为直接禁带半导体。这种半导体在本征吸收过程中发生电子的直接跃迁。由理论计算可知,
12、在直接跃迁中,如果对于任何k值的跃迁都是允许的,则吸收系数与光子能量的关系为: 当 当式中A基本为一常数。2)间接跃迁与间接禁带半导体 但是,不少半导体的导带底和价带顶并不像图l04所示那样具有相同的波矢,例如锗和硅。这类半导体称为间接禁带半导体,其能带结构如图10-5所示。对这类半导体,任何直接跃迁所吸收的光子能量都应该比其禁带宽度Eg大得多。因此,若只有直接跃迁,这类半导体应不存在与禁带宽度相当的光子吸收。这显然与实际情况不符。这个不符意味着在本征吸收中除了有符合选择定则的直接跃迁外,还存在另外一种形式的跃迁,如图105中的OS跃迁。在这种跃迁过程中,电子不仅吸收光子,同时还和晶格振动交换
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 半导体 光学 常数
限制150内