一次函数中的最值问题.pdf
《一次函数中的最值问题.pdf》由会员分享,可在线阅读,更多相关《一次函数中的最值问题.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学校 北师大三附中 教师 习富云 时间 课题 一次函数中的最值问题 教 学 目 标 知识与技能 由实际问题中的最值问题建立数学模型引入,然后利用图形变换和一次函数在直角坐标系中确定最值点,巩固一次函数的知识并进一步体会数形结合思想.过程与方法 体会图形变换在解决问题中的转化作用,利用一次函数的解析式求直线的交点,增强数学的应用意识.情感价值观 在解决问题的过程中,帮助学生认识数学,体验探索的快乐与成功的喜悦.教学 重点 图形变换和一次函数的应用.教学 难点 如何通过图形变换进行转化,确定对称点坐标然后求解析式进而求得最值点 教 学 过 程 活动内容 师生活动 设计意图 一、问题探究 1.提出问
2、题 问题 1 如图,要在燃气管道 l 上修建一个泵站,分别向A,B两城镇供气.泵站修在什么地方,可使所用的输气管线最短?2.实际问题数学化 如图,已知点 A、B 在直线 l 的同侧.在 l 上找点 P,使 PA+PB 最小.提问:1).线段和的最小值的理论依据是什么 2).如何将两条线段的和转化到一条线段上 3.几何问题代数化 学生独立思考,教师巡视.观察学生是否作数学化,同时对转化正确的同学给予肯定,并指出实际问题转化为数学问题是解决实际问题的第一步.学生会回答:利用两点之间线段最短;利用图形变换实现问题的转化 选用“西气东输”作为背景,引导学生了解数学来源于生活.让 学 生 明确 用 数
3、学方 法 解 决实际问题,BAl 教 学 过 程 提问:“如图,已知点A(4,3),点B(0,1)。若点C 是x 轴上一动点,当BCAC的值最小时,求C 点坐标.提问:如何在直角坐标系中确定两条直线的交点 4画图找点 解:做B点关于 x 轴的对称点B(0,-1)连接BB交 x 轴与点 C 设AB所在直线的解析式为 y=kx+b,将,BA两点坐标代入 341bkb 求得,k=1 AB所在直线的解析式为 y=x-1 点 C 坐标为(1,0)5思考 提出问题:如图,已知点A(4,3),点 B(0,-1)。若点 C 是 x 轴上一动点,当BCAC的值最大时,求 C 点坐标.提出问题:轴对称变换在解决问
4、题中起了什么作用?学生想到通过求直线的解析式再求其与 x 轴的交点.学生思考,讨论交流.利用轴对称变换和一次函数解决问题.学生独立思考并回得 将 实 际问 题 数 学化.回 忆 轴 对称 变 换 的知识.让 学 生 复习 一 次 函数 的 有 关知识 由 辅 助 问题的铺垫,利 用 轴 对BBCB 二、拓展 问题 2 如图,已知点 A(4,3)。若点 C 是直线y=-x+4 上一点,B 是直线x=5 上一点,当ABC 的周长最小时,求 C、B两点的坐标.分析:先找点 A 关于两条直线的对称点1A(1,0)、2A(6,3),连接 1A2A分别较两条直线于 B、C从而将ABC 的周长转化为线段1A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 中的 问题
限制150内