【创新设计】(浙江专用)2016届高考数学一轮复习 2-3函数的奇偶性与周期性课件 理.ppt
《【创新设计】(浙江专用)2016届高考数学一轮复习 2-3函数的奇偶性与周期性课件 理.ppt》由会员分享,可在线阅读,更多相关《【创新设计】(浙江专用)2016届高考数学一轮复习 2-3函数的奇偶性与周期性课件 理.ppt(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、基础诊断基础诊断考点突破考点突破课堂总结课堂总结第3讲函数的奇偶性与周期性基础诊断基础诊断考点突破考点突破课堂总结课堂总结最新考纲1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图象理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性基础诊断基础诊断考点突破考点突破课堂总结课堂总结1函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有 ,那么函数f(x)是偶函数关于 对称奇函数如果对于函数f(x)的定义域内任意一个x,都有 ,那么函数f(x)是奇函数关于 对称f(x)f(x)y轴f(x)f(x)原点知 识 梳 理基础诊
2、断基础诊断考点突破考点突破课堂总结课堂总结2奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性 ,偶函数在关于原点对称的区间上的单调性 (填“相同”、“相反”)(2)在公共定义域内两个奇函数的和函数是 ,两个奇函数的积函数是 两 个 偶 函 数 的 和 函 数、积 函 数 是 一 个 奇 函 数,一 个 偶 函 数 的 积 函 数 是 (3)若函数f(x)是奇函数且在x0处有定义,则f(0)0.相同相反奇函数偶函数偶函数奇函数基础诊断基础诊断考点突破考点突破课堂总结课堂总结3周期性(1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT)
3、,那么就称函数yf(x)为周期函数,称T为这个函数的周期(2)最小正周期:如果在周期函数f(x)的所有周期中 的正数,那么这个最小正数就叫做f(x)的最小正周期f(x)存在一个最小基础诊断基础诊断考点突破考点突破课堂总结课堂总结诊 断 自 测1思考辨析(在括号内打“”或“”)(1)函数yx2,x(0,)是偶函数()(2)偶函数图象不一定过原点,奇函数的图象一定过原点()(3)若函数yf(xa)是偶函数,则函数yf(x)关于直线xa对称()(4)函数f(x)在定义域上满足f(xa)f(x),则f(x)是周期为2a(a0)的周期函数()基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊
4、断考点突破考点突破课堂总结课堂总结3(2014新课标全国卷)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()Af(x)g(x)是偶函数B|f(x)|g(x)是奇函数Cf(x)|g(x)|是奇函数D|f(x)g(x)|是奇函数基础诊断基础诊断考点突破考点突破课堂总结课堂总结解析依题意得对任意xR,都有f(x)f(x),g(x)g(x),因此,f(x)g(x)f(x)g(x)f(x)g(x),f(x)g(x)是奇函数,A错;|f(x)|g(x)|f(x)|g(x)|f(x)|g(x),|f(x)|g(x)是偶函数,B错;f(x)|g(x)|f(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 【创新设计】浙江专用2016届高考数学一轮复习 2-3函数的奇偶性与周期性课件 创新 设计 浙江 专用 2016 高考 数学 一轮 复习 函数 奇偶性 周期性 课件
限制150内